Introduction to random fields and scale invariance: Lecture I

Hermine Biermé

4th april 2016, Stochastic Geometry conference, Nantes

Outlines

1 Random fields and scale invariance
2 Sample paths properties
3 Simulation and estimation
4 Geometric construction and applications

Lecture 1 :

1 Introduction to random fields
1 Definitions and law
2 Gaussian processes
3 Gaussian fields from processes
2 Stationarity and Invariances
1 Stationarity and Isotropy
2 Self-similarity or scale invariance
3 Stationary increments
4 Operator scaling Property

Introduction to random fields

Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and for $d \geq 1, T \subset \mathbb{R}^{d}$ is a set of indices

Definition

A (real) stochastic process indexed by T is just a collection of real random variables $X_{t}:(\Omega, \mathcal{A}) \rightarrow(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ measurable, $\forall t \in T$.

Exples:

- $d=1, X_{t}(\omega)=$ heart frequency at time $t \in T \subset \mathbb{R}$, with noise measurement or for an individual ω. In practice data are only available on a discrete finite subset S of T
- $d=2, T=[0,1]^{2}, X_{t}(\omega)=$ grey level of a picture at point $t \in T$.

In practice data are only available on pixels
$S=\{0,1 / n, \ldots, 1\}^{2} \subset T$ for an image of size $(n+1) \times(n+1)$.

Introduction to random fields

Definition

The distribution of $\left(X_{t}\right)_{t \in T}$ is given by all its finite dimensional distribution (fdd) ie the distribution of all real random vectors

$$
\left(X_{t_{1}} \ldots, X_{t_{k}}\right) \text { for } k \geq 1, t_{1}, \ldots, t_{k} \in T
$$

Joint distributions are often difficult to compute!

Definition

$\left(X_{t}\right)_{t \in T}$ is a second order of process if $\mathbb{E}\left(X_{t}^{2}\right)<+\infty$ for all $t \in T$.

- Mean function $m_{X}: t \in T \rightarrow \mathbb{E}\left(X_{t}\right) \in \mathbb{R}$
- Covariance function $K_{X}:(t, s) \in T \times T \rightarrow \operatorname{Cov}\left(X_{t}, X_{s}\right) \in \mathbb{R}$.

Introduction to random fields

When $m_{X}=0$, the process X is centered. Otherwize $Y=X-m_{X}$ is centered and $K_{Y}=K_{X}$.

Proposition

A function $K: T \times T \rightarrow \mathbb{R}$ is a covariance function iff
$1 K$ is symmetric
$2 K$ is positive definite : $\forall k \geq 1, t_{1}, \ldots, t_{k} \in T, \lambda_{1}, \ldots, \lambda_{k} \in \mathbb{R}$,

$$
\sum_{i, j=1}^{k} \lambda_{i} \lambda_{j} K\left(t_{i}, t_{j}\right) \geq 0
$$

Gaussian Processes

Definition

$\left(X_{t}\right)_{t \in T}$ is a Gaussian process if $\forall k \geq 1, t_{1}, \ldots, t_{k} \in T$

$$
\left(X_{t_{1}}, \ldots, X_{t_{k}}\right) \text { is a Gaussian vector of } \mathbb{R}^{k},
$$

$E Q \forall \lambda_{1}, \ldots, \lambda_{k} \in \mathbb{R}$, the real random variable $\sum_{i=1}^{k} \lambda_{i} X_{t_{i}}$ is a Gaussian variable.

Proposition

When $\left(X_{t}\right)_{t \in T}$ is a Gaussian process, $\left(X_{t}\right)_{t \in T}$ is a second order process and its law is determined by its mean function $m_{X}: t \mapsto \mathbb{E}\left(X_{t}\right)$ and its covariance function $K_{X}:(t, s) \mapsto \operatorname{Cov}\left(X_{t}, X_{s}\right)$.

Theorem (Komogorov)

Let $m: T \rightarrow \mathbb{R}$ and $K: T \times T \rightarrow \mathbb{R}$, symmetric and positive definite, then there exists a Gaussian process with mean m and covariance K.

Brownian motion on \mathbb{R}^{+}

$T=\mathbb{R}^{+}$and $\left(X_{k}\right)_{k}$ iid $\mathbb{E}\left(X_{k}\right)=0$ and $\operatorname{Var}\left(X_{k}\right)=1$

$$
\forall t \in T, S_{n}(t)=\frac{1}{\sqrt{n}} \sum_{k=1}^{[n t]} X_{k}
$$

By CLT $S_{n}(t) \underset{n \rightarrow+\infty}{\stackrel{d}{\longrightarrow}} \mathcal{N}(0, t)$. Moreover, if $t_{0}=0<t_{1}<\ldots<t_{k}$,

$$
\left(S_{n}\left(t_{1}\right), S_{n}\left(t_{2}\right)-S_{n}\left(t_{1}\right), \ldots, S_{n}\left(t_{k}\right)-S_{n}\left(t_{k-1}\right)\right) \underset{n \rightarrow+\infty}{\stackrel{d}{\rightarrow}} Z=\left(Z_{1}, \ldots, Z_{k}\right)
$$

with $Z \sim \mathcal{N}\left(0, K_{Z}\right)$ for $K_{Z}=\operatorname{diag}\left(t_{1}, t_{2}-t_{1}, \ldots, t_{k}-t_{k-1}\right)$. Hence

$$
\begin{array}{ll}
& \left(S_{n}\left(t_{1}\right), S_{n}\left(t_{2}\right), \ldots, S_{n}\left(t_{k}\right)\right) \\
=\underset{n \rightarrow+\infty}{d} & P\left(S_{n}\left(t_{1}\right), S_{n}\left(t_{2}\right)-S_{n}\left(t_{1}\right), \ldots, S_{n}\left(t_{k}\right)-S_{n}\left(t_{k-1}\right)\right)
\end{array}
$$

with $P Z \sim \mathcal{N}\left(0, P K_{Z} P^{*}\right)$ and $P K_{Z} P^{*}=\left(\min \left(t_{i}, t_{j}\right)\right)_{1 \leq i, j \leq k_{i}}$

Brownian motion on \mathbb{R}

Note that $K(t, s)=\min (t, s)=\frac{1}{2}(t+s-|t-s|)$ is a cov. func. on $\mathbb{R}^{+} \times \mathbb{R}^{+}$. Let $B_{t}=X_{t}^{(1)}$ for $t \geq 0, B_{t}=X_{-t}^{(2)}$ for $t<0$ with $X^{(1)}$ and $X^{(2)} 2$ iid K.

Definition

A (standard) Brownian motion on \mathbb{R} is a centered Gaussian process
$\left(B_{t}\right)_{t \in \mathbb{R}}$ with covariance function given by

$$
\operatorname{Cov}\left(B_{t}, B_{s}\right)=\frac{1}{2}(|t|+|s|-|t-s|), \forall t, s \in \mathbb{R} .
$$

Gaussian fields from processes

Proposition

Let $K: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ be a continuous covariance function. For all μ positive finite measure on S^{d-1}

$$
(x, y) \mapsto \int_{S^{d-1}} K(x \cdot \theta, y \cdot \theta) d \mu(\theta)
$$

is a covariance function on $\mathbb{R}^{d} \times \mathbb{R}^{d}$.
Exple : Note that $\int_{S^{d-1}}|x \cdot \theta| d \theta=c_{d}\|x\|$, with $c_{d}=\int_{S^{d-1}}|e \cdot \theta| d \theta$ for $e=(1,0, \ldots, 0)$. Then,

$$
\int_{S^{d-1}} K_{B}(x \cdot \theta, y \cdot \theta) d \theta=\frac{c_{d}}{2}(\|x\|+\|y\|-\|x-y\|)
$$

Lévy Chentsov random field

Definition

A (standard) Levy Chentsov field on \mathbb{R}^{d} is a centered Gaussian field $\left(X_{x}\right)_{x \in \mathbb{R}^{d}}$ with covariance function given by
$\operatorname{Cov}\left(X_{x}, X_{y}\right)=\frac{1}{2}(\|x\|+\|y\|-\|x-y\|), \forall x, y \in \mathbb{R}^{d}$.

Gaussian fields from processes

Proposition

Let $K_{1}, K_{2}, \ldots, K_{d}$ covariance functions on $\mathbb{R} \times \mathbb{R}$, then

$$
(x, y) \mapsto \prod_{i=1}^{d} K_{i}\left(x_{i}, y_{i}\right)
$$

is a covariance function on $\mathbb{R}^{d} \times \mathbb{R}^{d}$.
Exple : Brownian sheet $(x, y) \mapsto \prod_{i=1}^{d} \frac{1}{2}\left(\left|x_{i}\right|+\left|y_{i}\right|-\left|x_{i}-y_{i}\right|\right)$

Stationarity

Definition

$X=\left(X_{x}\right)_{x \in \mathbb{R}^{d}}$ (strongly) stationary if, $\forall x_{0} \in \mathbb{R}^{d},\left(X_{x+x_{0}}\right)_{x \in \mathbb{R}^{d}}$ has the same law than X.

Proposition

If $X=\left(X_{x}\right)_{x \in \mathbb{R}^{d}}$ stationary and second order, $\forall x_{0} \in \mathbb{R}^{d}$,

- $m_{X}(x)=m_{X}$
- $K_{X}(x, y)=c_{X}(x-y)$ with $c_{X}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ s.t.
$1 c_{X}(0) \geq 0$
$2\left|c_{X}(x)\right| \leq c_{X}(0) \forall x \in \mathbb{R}^{d}$
$3 c_{x}$ is of positive type ie

$$
\forall k \geq 1, x_{1}, \ldots, x_{k} \in \mathbb{R}^{d}, \lambda_{1}, \ldots, \lambda_{k} \in \mathbb{R},
$$

$$
\sum_{i, j=1}^{k} \lambda_{i} \lambda_{j} c_{X}\left(x_{i}-x_{j}\right) \geq 0
$$

Stationarity

Theorem (Bochner 1932)

An even continuous function $c: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is of positive type if and only if $c(0)>0$ and there exists a symmetric probability measure ν on \mathbb{R}^{d} such that

$$
c(x)=c(0) \int_{\mathbb{R}^{d}} e^{i t \cdot x} d \nu(x)
$$

In other words there exists a symmetric random vector Z on \mathbb{R}^{d} such that

$$
c(x)=c(0) \mathbb{E}\left(e^{i x \cdot z}\right)
$$

$\mathbf{R k}$: When c_{X} is the covariance of the stationary field X, ν_{X} is called the spectral measure of X.

Ornstein Uhlenbeck process

Let B a Brownian motion on $\mathbb{R}^{+}, \theta>0$ and define

$$
X_{t}=e^{-\theta t} B_{e^{2 \theta t}},
$$

then X is a centered stationary Gaussian process on \mathbb{R} with covariance

$$
\begin{aligned}
& \qquad \operatorname{Cov}\left(X_{t}, X_{s}\right)=e^{-\theta|t-s|}, \forall t, s \in \mathbb{R}, \\
& \text { and } \nu_{X}(d t)=\frac{\theta^{2}}{\pi\left(\theta^{2}+t^{2}\right)} d t .
\end{aligned}
$$

$\theta=5$

$\theta=1$

$\theta=1 / 5$

Isotropy

Definition

$X=\left(X_{x}\right)_{x \in \mathbb{R}^{d}}$ isotropic if, $\forall R$ rotation, $\left(X_{R x}\right)_{x \in \mathbb{R}^{d}}$ has the same law than X.

Exple : the Lévy Chentsov field is isotropic since

$$
\begin{aligned}
\operatorname{Cov}\left(X_{R x}, X_{R y}\right) & =\frac{1}{2}(\|R x\|+\|R y\|-\|R x-R y\|) \\
& =\operatorname{Cov}\left(X_{x}, X_{y}\right)
\end{aligned}
$$

Exple: If $g(t)=e^{-t^{2} / 2}$ then $k(t, s)=g(t-s)$ covariance and

$$
K(x, y)=e^{-\|x-y\|^{2} / 2}=\prod_{i=1}^{d} k\left(x_{i}, y_{i}\right),
$$

allows to define a stationary isotropic Gaussian field.

Isotropy

Gaussian covariance

[Powell, LNS, 2014]

Self-similarity

Definition

$X=\left(X_{x}\right)_{x \in \mathbb{R}^{d}}$ self-similar of order $H>0$ if, $\forall c>0,\left(X_{c x}\right)_{x \in \mathbb{R}^{d}}$ has the same law than $c^{H} X$.

Exple : the Lévy Chentsov field is self-similar of order $H=1 / 2$ since

$$
\begin{aligned}
\operatorname{Cov}\left(X_{c x}, X_{c y}\right) & =\frac{1}{2}(\|c x\|+\|c y\|-\|c x-c y\|) \\
& =c \operatorname{Cov}\left(X_{x}, X_{y}\right)=\operatorname{Cov}\left(c^{1 / 2} X_{x}, c^{1 / 2} X_{y}\right)
\end{aligned}
$$

Corollary
There does not exist a (non-trivial) stationary self-similar field.

Stationary increments

Definition

$X=\left(X_{x}\right)_{x \in \mathbb{R}^{d}}$ has (strongly) stationary increments if, $\forall x_{0} \in \mathbb{R}^{d}$, $\left(X_{x+x_{0}}-X_{x_{0}}\right)_{x \in \mathbb{R}^{d}}$ has the same law than $\left(X_{x}-X_{0}\right)_{x \in \mathbb{R}^{d}}$.

Proposition

If $X=\left(X_{x}\right)_{x \in \mathbb{R}^{d}}$ second order centered with s.i. and $X_{0}=0$ a.s.,

- $K_{X}(x, y)=\frac{1}{2}\left(v_{X}(x)+v_{X}(y)-v_{X}(x-y)\right), \forall x, y \in \mathbb{R}^{d}$
- $v_{X}(x)=\operatorname{Var}\left(X_{x+x_{0}}-X_{x_{0}}\right)=\operatorname{Var}\left(X_{x}\right)$ called variogram s.t.
$1 v_{X}(0)=0$
$2 v_{x}(x) \geq 0$ and $v_{x}(-x)=v_{x}(x)$
$3 v_{X}$ is conditionally of negative type ie $\forall k \geq 1, x_{1}, \ldots, x_{k} \in \mathbb{R}^{d}, \lambda_{1}, \ldots, \lambda_{k} \in \mathbb{R}$,

$$
\sum_{i=1}^{k} \lambda_{i}=0 \Rightarrow \sum_{i, j=1}^{k} \lambda_{i} \lambda_{j} v_{X}\left(x_{i}-x_{j}\right) \leq 0 .
$$

Stationary increments

Theorem (Schoenberg)

Let $v: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be an even continuous function. $E Q U$
i) v is conditionally of negative type
ii) $K:(x, y) \mapsto \frac{1}{2}(v(x)+v(y)-v(x-y))$ is a covariance function
iii) $\forall \lambda>0, e^{-\lambda v}$ is of positive type

Corollary (Istas, 2006)
If v is a variogram then v^{H} is a variogram $\forall H \in(0,1]$.

Fractional Brownian fields

Definition

A (standard) Fractional Brownian field on \mathbb{R}^{d}, with Hurst parameter $H \in(0,1)$, is a centered Gaussian field $\left(B_{H}\right)_{x \in \mathbb{R}^{d}}$ with covariance function given by

$$
\operatorname{Cov}\left(B_{H}(x), B_{H}(y)\right)=\frac{1}{2}\left(\|x\|^{2 H}+\|y\|^{2 H}-\|x-y\|^{2 H}\right), \forall x, y \in \mathbb{R}^{d} .
$$

$H=0.2$

$H=0.4$

$H=0.6$

Fractional Brownian fields

Main Properties :

- stationary increments: $\forall x_{0} \in \mathbb{R}^{d}, B_{H}\left(x_{0}+\cdot\right)-B_{H}\left(x_{0}\right) \stackrel{f d d}{=} B_{H}(\cdot)$
- H self-similarity : $\forall c>0, B_{H}(c \cdot) \stackrel{f d d}{=} c^{H} B_{H}(\cdot)$
- Isotropy : $\forall R$ rotation $B_{H}(R \cdot) \stackrel{f d d}{=} B_{H}(\cdot)$
\Leftrightarrow Uniqueness up to a constant

Remarks :

- for $d=1$ called fractional Brownian motion [Kolmogorov, 1940], [Mandelbrot and Van Ness, 1968]
- sssi implies that $H \leq 1$

■ (isotropic) sssi for $H=1$ corresponds to $(Z \cdot x)_{x \in \mathbb{R}^{d}}$ with Z (isotropic) Gaussian vector on \mathbb{R}^{d}.

Anisotropic generalizations

Let $H \in(0,1)$ and $v_{H}: t \in \mathbb{R} \mapsto|t|^{2 H}$, conditionally of negative type. If μ is a finite positive measure on S^{d-1},

$$
v_{H, \mu}(x)=\int_{S^{d-1}} v_{H}(x \cdot \theta) \mu(d \theta)=\int_{S^{d-1}}|x \cdot \theta|^{2 H} \mu(d \theta)=c_{H, \mu}\left(\frac{x}{\|x\|}\right)\|x\|^{2 H}
$$

is conditionally of negative type function on \mathbb{R}^{d}.
Let $X_{H, \mu}=\left(X_{H, \mu}(x)\right)_{x \in \mathbb{R}^{d}}$ be a centered Gaussian random field with s.i. and variogram $v_{H, \mu}$, it is still H s.s. but may not be isotropic
$\Rightarrow c_{H, \mu}$ is called topothesy function
Exple : Let $d=2$ and for $\alpha \in(0, \pi / 2], \mu(d \theta)=\mathbf{1}_{(-\alpha, \alpha)}(\theta) d \theta$

Elementary anisotropic fractional Brownian fields

Then $c_{H, \alpha}$ is a π periodic function defined on $(-\pi / 2, \pi / 2]$ by
$c_{H, \alpha}(\theta)=2^{2 H}\left\{\begin{array}{ccc}\beta_{H}\left(\frac{1-\sin (\alpha-\theta)}{2}\right)+\beta_{H}\left(\frac{1+\sin (\alpha+\theta)}{2}\right) \\ \beta_{H}\left(\frac{1+\sin (\alpha-\theta)}{2}\right)+\beta_{H}\left(\frac{1-\sin (\alpha+\theta)}{2}\right) & \text { if } & -\alpha \leq \theta+\frac{\pi}{2} \leq \alpha \\ \left|\beta_{H}\left(\frac{1-\sin (\alpha-\theta)}{2}\right)-\beta_{H}\left(\frac{1+\sin (\alpha+\theta)}{2}\right)\right| & \text { if } & -\alpha \leq \theta-\frac{\pi}{2} \leq \alpha \\ \text { otherwise }\end{array}\right.$
with $\beta_{H}(t)=\int_{0}^{t} u^{H-1 / 2}(1-u)^{H-1 / 2} d u$ is a Beta incomplete function.

[HB, Moisan, Richard, 2015]

Elementary anisotropic fractional Brownian fields

$H=0.2, \alpha=\pi / 3$

$\alpha=\pi / 2, H=0.5$

$H=0.5, \alpha=\pi / 3$

$\alpha=\pi / 3, H=0.5$

$H=0.8, \alpha=\pi / 3$

$$
\alpha=\pi / 6, H=0.5
$$

Operator scaling random fields

Let E be a $d \times d$ diagonalizable matrix with eigenvalues $\alpha_{1}^{-1}, \ldots, \alpha_{d}^{-1} \in[1,+\infty)$ and $\theta_{1}, \ldots, \theta_{d}$ be such that $E^{t} \theta_{i}=\alpha_{i}^{-1} \theta_{i}$.
For $H \in(0,1]$, we define the variogram

$$
v_{H, E}(x)=\tau_{E}(x)^{2 H}=\left(\sum_{i=1}^{d}\left|\left\langle x, \theta_{i}\right\rangle\right|^{2 \alpha_{i}}\right)^{H}=\left(\sum_{i=1}^{d} v_{\alpha_{i}}\left(\left\langle x, \theta_{i}\right\rangle\right)\right)^{H} .
$$

Let $X_{H, E}=\left(X_{H, E}(x)\right)_{x \in \mathbb{R}^{d}}$ be a centered Gaussian random field with s.i. and variogram $v_{H, E}$. Then, it is (E, H) operator scaling :

$$
\forall c>0, X_{H, E}\left(c^{E} \cdot\right) \stackrel{f d d}{=} c^{H} X_{H, E}(\cdot)
$$

[HB, Meerschaert, Scheffler, 2007] \& [HB, Lacaux, in preparation]

SS Operator scaling random fields

When $\alpha_{1}=\ldots=\alpha_{d}=\alpha \in(0,1], X_{H, E}$ is αH self-similar.

SS Operator scaling random fields

Self-similar of order $\boldsymbol{H} \alpha_{1}=H \alpha_{2}=0.5$

Operator scaling with $H \alpha_{1}=0.3$ and $H \alpha_{2}=0.4$

$H=0.6$

$H=0.7$

(a) $H=0.8$

References

遇
R．Adler（1981）：The Geometry of Random Fields．John Wiley \＆ Sons

目 A．Benassi，S．Cohen and J．Istas（2013）：Fractional Fields and Applications．Springer

围 A．Bonami and A．Estrade（2003）：Anisotropic analysis of some Gaussian Models．J．Fourier Anal．Appl．，9，215－236

目 Davies and Hall（1999）：Fractal Analysis of surface roughness by using spatial data J．R．Stat．Soc．Ser．B，61，3－37

