Introduction to random fields and scale invariance: Lecture IV

Hermine Biermé

5th april 2016, Stochastic Geometry conference, Nantes

Outlines

1 Random fields and scale invariance
2 Sample paths properties
3 Simulation and estimation
4 Geometric construction and applications

Lecture 4 :

1 Geometric construction
1 Random measures
2 Chentsov's representation: Lévy and Takenaka constructions
3 Fractional Poisson field
2 Application in medical imaging analysis
1 Osteoporosis and bone radiographs
2 Mammograms and density analysis

Random Measures

Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space. Let μ be a σ-finite nonnegative measure on $\left(\mathbb{R}^{k}, \mathcal{B}\left(\mathbb{R}^{k}\right)\right)$ with $k \geq 1$ and set

$$
\mathcal{E}_{\mu}=\left\{A \in \mathcal{B}\left(\mathbb{R}^{k}\right) \text { s.t. } \mu(A)<+\infty\right\} .
$$

A random measure M is a stochastic process $M=\left\{M(A) ; A \in \mathcal{E}_{\mu}\right\}$ satisfying

- For all $A \in \mathcal{E}_{\mu}, M(A)$ is a real random variable;

■ For $A_{1}, \ldots, A_{n} \in \mathcal{E}_{\mu}$ disjoint sets the r.v. $M\left(A_{1}\right), \ldots, M\left(A_{n}\right)$ are independant ;

■ For $\left(A_{n}\right)_{n \in \mathbb{N}}$ disjoint sets s.t. $\underset{n \in \mathbb{N}}{\cup} A_{n} \in \mathcal{E} \mathcal{E}_{\mu}$,

$$
M\left(\cup_{n \in \mathbb{N}} A_{n}\right)=\sum_{n \in \mathbb{N}} M\left(A_{n}\right) \text { a.s. }
$$

Poisson random measures

A Poisson random mesure with intensty μ is a r.m. N such that

$$
N(A) \sim \mathcal{P}(\mu(A)) .
$$

In this case

$$
N=\sum_{i \in I} \delta_{T_{i}},
$$

where $\Phi=\left(T_{i}\right)_{i \in I}$ is a countable family of random variables with values in \mathbb{R}^{k} called Poisson point process on \mathbb{R}^{k} with intensity μ.
Exple : $k=1, \mu=\lambda$ Lebesgue, $(N([0, t]))_{t \geq 0}$ Poisson process of intensity λ and Φ corresponds to the jumps of the Poisson process.

Gaussian random measures

A Gaussian random measure with intensity μ is a r.m. W such that

$$
W(A) \sim \mathcal{N}(0, \mu(A))
$$

In this case, for all $A, B \in \mathcal{E} \mathcal{E}_{\mu}$,

$$
\begin{aligned}
\operatorname{Cov}(W(A), W(B)) & =\mu(A \cap B) \\
& =\frac{1}{2}(\mu(A)+\mu(B)-\mu(A \Delta B))
\end{aligned}
$$

$\mathbf{R k}$: true as soon as M is of second order st $\operatorname{Var}(M(A))=\mu(A)$ and so for N Poisson r.m. of intensity μ.
Exple : $k=1, \mu=\lambda$ Lebesgue, $B=(W([0, t]))_{t \geq 0}$ is a Brownian motion with diffusion λ.
Conversely one can define $W(A)=\int_{0}^{+\infty} \mathbf{1}_{A}(t) d B_{t}$.

Central limit theorem in high intensity

If $N^{(1)}, \ldots, N^{(n)}$ are independant Poisson r.m. with the same intenity μ

$$
\sum_{i=1}^{n} N^{(i)} \text { is a Poisson random measure with intensity } n \mu \text {. }
$$

By CLT, we deduce that if N_{λ} is a Poisson r.m. with intensity $\lambda \mu$ and W is a Gaussian r.m. with intensity μ,

$$
\left(\lambda^{-1 / 2}\left(N_{\lambda}(A)-\lambda \mu(A)\right)\right)_{A \in \mathcal{E}_{\mu}} \xrightarrow[\lambda \rightarrow+\infty]{f d d}(W(A))_{A \in \mathcal{E}_{\mu}} .
$$

Donsker invariance principle

Let $\left(X_{j}\right)_{j \in \mathbb{Z}^{k}}$ be an iid sequence $\mathbb{E}\left(X_{j}\right)=0$ and $\operatorname{Var}\left(X_{j}\right)=1$. Let $\mathcal{A} \subset \mathcal{B}\left(\mathbb{R}^{k}\right)$ and define the set-indexed process for $A \in \mathcal{A}$,

$$
S(A)=\sum_{j \in A} X_{j}=\sum_{j \in \mathbb{Z}^{k}} X_{j} \delta_{j}(A) .
$$

By CLT, for W a Gaussian r.m. with intensity Leb, we get

$$
\left(n^{-k / 2} S(n A)\right)_{A \in \mathcal{A}} \xrightarrow[n \rightarrow+\infty]{f d d}(W(A))_{A \in \mathcal{A}},
$$

Alexander and Pyke [86] obtained invariance principle considering the smoothed version

$$
S(A)=\sum_{j \in \mathbb{Z}^{k}} \operatorname{Leb}\left(A \cap R_{j}\right) X_{j} \text { with } R_{j}=\prod_{i=1}^{k}\left[j_{i}, j_{i}+1\right] .
$$

and $\mathcal{A} \subset\left\{B \in \mathcal{B}\left(\mathbb{R}^{k}\right) ; \operatorname{Leb}(\partial B)=0\right\}$.

Self-similar measures

Let μ be a σ-finite nonnegative measure on $\left(\mathbb{R}^{k}, \mathcal{B}\left(\mathbb{R}^{k}\right)\right.$).
Ass. 1: $\exists \beta>0$ s.t. $\forall A$ with $\mu(A)<+\infty, n \in \mathbb{N}^{*}, \mu(n A)=n^{\beta} \mu(A)$
We define

$$
S(A)=\sum_{j \in \mathbb{Z}^{k}} \mu\left(A \cap R_{j}\right)^{1 / 2} X_{j} \text { with } R_{j}=\prod_{i=1}^{k}\left[j_{i}, j_{i}+1\right] .
$$

Assuming $X_{j} \sim \mathcal{N}(0,1), n^{-\beta / 2} S(n A) \sim \mathcal{N}(0, \mu(A))$, since by Ass. 1 ,

$$
\mu(A)=n^{-\beta} \sum_{j \in \mathbb{Z}^{k}} \mu\left(n A \cap R_{j}\right) \text { with } R_{j}=\prod_{i=1}^{k}\left[j_{i}, j_{i}+1\right] .
$$

Ass 2: $\mu \ll$ Leb and $\mathcal{A} \subset\left\{A \in \mathcal{B}\left(\mathbb{R}^{k}\right) ; \mu(A)<\infty\right.$ and $\left.\operatorname{Leb}(\partial A)=0\right\}$ Then, for W a Gaussian r.m. with intensity μ

$$
\left(n^{-\beta / 2} S(n A)\right)_{A \in \mathcal{A}} \xrightarrow[n \rightarrow+\infty]{\text { fdd }}(W(A))_{A \in \mathcal{A}} .
$$

Extension to the iid case- Lindeberg's type condition

Ass 3 : Let $\pi(j)=\min _{1 \leq i \leq k}\left(\left|j_{i}\right|\right)$, we assume that
(a) $\lim \sup \mu\left(R_{j}\right)<+\infty$;
$\pi(j) \rightarrow+\infty$
(b) $\forall e \in \mathbb{Z}^{k}$ with $|e|=1, \mu\left(R_{j+e}\right)=\mu\left(R_{j}\right)+\underset{\pi(j) \rightarrow+\infty}{o}\left(\mu\left(R_{j}\right)\right)$,

Under Ass 1-3, Lindeberg's type condition (CLT without id) is satisfied, for $\left(X_{j}\right)_{j \in \mathbb{Z}^{k}}$ iid with $\mathbb{E}\left(X_{j}\right)=0$ and $\operatorname{Var}\left(X_{j}\right)=1$,

$$
\left(n^{-\beta / 2} S(n A)\right)_{A \in \mathcal{A}} \xrightarrow[n \rightarrow+\infty]{\text { fdd }}(W(A))_{A \in \mathcal{A}} .
$$

Extension under a weak dependence assumption (2-stability $\mathrm{Wu}[05]$) to the case where $\left(X_{j}\right)_{j \in \mathbb{Z}^{k}}$ is stationary sequence.
[HB, O. Durieu, Trans. AMS (2014)]

Chentsov's type representation [Samorodnitsky, Taqqu, (1994)]

Let M be a r.m. associated with μ on \mathbb{R}^{k} and $\mathcal{V}=\left\{V_{x} ; x \in \mathbb{R}^{d}\right\}$ for $d \geq 1$, with $\mu\left(V_{x}\right)<\infty$. The random field

$$
X_{x}=M\left(V_{x}\right), x \in \mathbb{R}^{d}
$$

is called Chentsov random field associated with M and \mathcal{V}. If M is of second order s.t. $\operatorname{Var}(M(A))=\mu(A)$ then

$$
\operatorname{Var}\left(X_{x}-X_{y}\right)=\mu\left(V_{x} \Delta V_{y}\right) .
$$

$1 X$ has stationary increments $\Rightarrow \mu\left(V_{x} \Delta V_{y}\right)=\mu\left(V_{x-y} \Delta V_{0}\right)$;
$2 X$ is isotropic $\Rightarrow \mu\left(V_{R x}\right)=\mu\left(V_{x}\right), \forall$ vectorial rotation R;
$3 X$ is H-self-similar $\Rightarrow \mu\left(V_{c x}\right)=c^{2 H} \mu\left(V_{x}\right), \forall c>0$.

Chentsov's type representation

If X is H self-similar with stationary increments then $H \in[0,1 / 2]$. If moreover X is isotropic

$$
\Rightarrow \mu\left(V_{x} \Delta V_{y}\right)=C\|x-y\|^{2 H}, t, s \in \mathbb{R}^{d}
$$

Lévy Chentsov's construction (1948 \& 1957) for $H=1 / 2$:

- $\forall x \in \mathbb{R}^{d}, V_{x}=B\left(\frac{x}{2}, \frac{\|x\|}{2}\right)=\left\{z \in \mathbb{R}^{d}:\left\|z-\frac{x}{2}\right\|<\frac{\|x\|}{2}\right\}$.
- $\mu(d z)=\|z\|^{-d+1} d z, 2 H=1$-self-similar on \mathbb{R}^{d}.

In polar coordinates $V_{x}=\left\{(r, \theta) \in \mathbb{R}_{+} \times S^{d-1}: 0<r<\theta \cdot x\right\}$

Lévy Chentsov's construction for $H=1 / 2$

Then,

$$
\mu\left(V_{x}\right)=\int_{S^{d-1}} \int_{\mathbb{R}_{+}} 1_{\{r<\theta \cdot x\}} d r d \theta=\frac{1}{2} \int_{S^{d-1}}|\theta \cdot x| d \theta=\frac{c_{d}}{2}\|x\| .
$$

Moreover,

$$
\begin{aligned}
\mu\left(V_{x} \cap V_{y}^{c}\right) & =\int_{S^{d-1}} \int_{\mathbb{R}_{+}} 1_{\{\theta \cdot y \leq r<\theta \cdot x\}} d r d \theta \\
& =\int_{0<\theta \cdot y<\theta \cdot x} \theta \cdot(x-y) d \theta+\int_{\theta \cdot y<0<\theta \cdot x} \theta \cdot x d \theta
\end{aligned}
$$

Similarly, by change of variable,

$$
\mu\left(V_{y} \cap V_{x}^{c}\right)=\int_{\theta \cdot y<\theta \cdot x<0}|\theta \cdot(x-y)| d \theta+\int_{\theta \cdot y<0<\theta \cdot x}(-\theta \cdot y) d \theta
$$

so that

$$
\mu\left(V_{x} \Delta V_{y}\right)=\frac{1}{2} \int_{S^{d-1}}|\theta \cdot(x-y)| d \theta=\frac{c_{d}}{2}\|x-y\| .
$$

Takenaka's construction (1987) for $H \in(0,1 / 2)$

- $\forall x \in \mathbb{R}^{d}, \mathcal{C}_{x}=\left\{(z, r) \in \mathbb{R}^{d} \times \mathbb{R}:\|z-x\| \leq r\right\}$ and $V_{x}=\mathcal{C}_{x} \Delta \mathcal{C}_{0}$.
- $\mu_{H}(d z, d r)=r^{2 H-d-1} \mathbf{1}_{r>0} d z d r 2 H$-self-similar on $\mathbb{R}^{d} \times \mathbb{R}$.

$$
\begin{aligned}
\mu_{H}\left(\mathcal{C}_{x} \cap \mathcal{C}_{0}^{c}\right) & =\frac{1}{d-2 H} \int_{\|z-x\|<\|z\|}\left(\|z-x\|^{2 H-d}-\|z\|^{2 H-d}\right) d z \\
& =C_{H, d}\|x\|^{2 H}=\mu_{H}\left(\mathcal{C}_{0} \cap \mathcal{C}_{x}^{c}\right)
\end{aligned}
$$

Rk: $V_{x} \Delta V_{y}=\mathcal{C}_{x} \Delta \mathcal{C}_{y}, \mu_{H}\left(\mathcal{C}_{x} \Delta \mathcal{C}_{y}\right)=\mu_{H}\left(\mathcal{C}_{x-y} \Delta \mathcal{C}_{0}\right)$ but $\mu_{H}\left(\mathcal{C}_{x}\right)=+\infty$.

Invariance principle

If $\left(X_{j}\right)_{j \in \mathbb{Z}^{d+1}}$ is a centered stationary sequence 2-stable, then

$$
\left(n^{-H} \sum_{j \in \mathbb{Z}^{d+1}} \mu_{H}\left(n V_{x} \cap R_{j}\right)^{1 / 2} X_{j}\right)_{x \in \mathbb{R}^{d}} \xrightarrow[n \rightarrow+\infty]{f d d}\left(\sigma W_{H}\left(V_{x}\right)\right)_{x \in \mathbb{R}^{d}},
$$

with

- $\sigma^{2}=\sum_{j \in \mathbb{Z}^{d+1}} \operatorname{Cov}\left(X_{0}, X_{j}\right)$
- W_{H} is a Gaussian r.m. on $\mathbb{R}^{d} \times \mathbb{R}$ of intensity μ_{H}
- $\left(W_{H}\left(V_{x}\right)\right)_{t \in \mathbb{R}^{d}}=\left(\sqrt{C_{H, d}} B_{H}(x)\right)_{x \in \mathbb{R}^{d}}$
where B_{H} is the Levy Fractional Brownian field characterized by

$$
\operatorname{Cov}\left(B_{H}(x), B_{H}(y)\right)=\frac{1}{2}\left(\|x\|^{2 H}+\|y\|^{2 H}-\|x-y\|^{2 H}\right),
$$

Poisson case

When $N_{\lambda, H}$ is a Poisson r.m. on $\mathbb{R}^{d} \times \mathbb{R}$ with intensity $\lambda \mu_{H}$ for $\lambda>0$,

$$
N_{\lambda, H}\left(\mathcal{C}_{x} \Delta \mathcal{C}_{0}\right)=N_{\lambda, H}\left(\mathcal{C}_{x} \cap \mathcal{C}_{0}^{c}\right)+N_{\lambda, H}\left(\mathcal{C}_{x}^{c} \cap \mathcal{C}_{0}\right)
$$

We define the centered fractional Poisson field on \mathbb{R}^{d} by :

$$
\begin{aligned}
F_{\lambda, H}(x) & =N_{\lambda, H}\left(\mathcal{C}_{x} \cap \mathcal{C}_{0}^{c}\right)-N_{\lambda, H}\left(\mathcal{C}_{x}^{c} \cap \mathcal{C}_{0}\right) \\
& =\int_{\mathbb{R}^{d} \times \mathbb{R}}\left(\mathbf{1}_{B(z, r)}(x)-\mathbf{1}_{B(z, r)}(0)\right) N_{\lambda, H}(d z, d r) .
\end{aligned}
$$

Then $\left(F_{\lambda, H}(x)\right)_{x \in \mathbb{R}^{d}}$ is centered, with stationary increments, isotropic with covariance

$$
\operatorname{Cov}\left(F_{\lambda, H}(x), F_{\lambda, H}(y)\right)=\frac{\lambda C_{H, d}}{2}\left(\|x\|^{2 H}+\|y\|^{2 H}-\|x-y\|^{2 H}\right)
$$

This field is not self-similar but

$$
\left(F_{\lambda, H}(c x)\right)_{x \in \mathbb{R}^{d}} \stackrel{f d d}{=}\left(F_{\lambda c^{2 H}, H}(x)\right)_{x \in \mathbb{R}^{d}}, \forall c>0 .
$$

Properties

- Finite-dimensional distributions of $\left(F_{\lambda, H}(x)\right)_{x \in \mathbb{R}^{d}}$ are characterized by $(d+1)$-dimensional ones [Sato,1991].
- $\operatorname{CLT}\left(\lambda^{-1 / 2} F_{\lambda, H}(x)\right)_{x \in \mathbb{R}^{d}} \xrightarrow[\lambda \rightarrow+\infty]{f d d}\left(\sqrt{C_{H, d}} B_{H}(x)\right)_{x \in \mathbb{R}^{d}}$

- For H_{k} vector subspace of dimension $k \leq d$ $\left(F_{\lambda, H}\left(x_{0}+t\right)-F_{\lambda, H}\left(x_{0}\right)\right)_{t \in H_{k}} \stackrel{f d d}{=}\left(F_{C_{H, d} C_{H, k} \lambda}^{k}{ }^{-1}(t)\right)_{t \in \mathbb{R}^{k}}$, with F^{k} a fractional Poisson field defined on \mathbb{R}^{k}.

The case of dimension 1

Sample paths Poisson (top) vs Gaussian (bottom)

$H=0.1$

$H=0.2$

$H=0.3$

$H=0.4$

Quadratic Variations

For $u \in \mathbb{N}^{*}$, quadratic variations of $F_{\lambda, H}$ with step u :

$$
V_{\lambda, n}^{F}(u)=\frac{1}{n} \sum_{k=0}^{n-1}\left(F_{\lambda, H}(k+u)-F_{\lambda, H}(k)\right)^{2},
$$

and $V_{\lambda, n}^{B}(u)$ quadratic variations of $B_{\lambda, H}$ with step u for $B_{\lambda, H}$ a fBm with same covariance as $F_{\lambda, H}$.

- $\mathbb{E}\left(V_{\lambda, n}^{F}(u)\right)=\operatorname{Var}\left(F_{\lambda, H}(u)\right)=\lambda C_{H, 1} u^{2 H}=\mathbb{E}\left(V_{\lambda, n}^{B}(u)\right)$;
- [HB, Demichel, Estrade, ECP 2013] $\exists v_{1, u}(H)>0$ and $v_{2, u}(H)>0 \mathrm{tq}$

$$
\operatorname{Var}\left(V_{\lambda, n}^{F}(u)\right) \underset{n \rightarrow+\infty}{\sim}\left(\lambda v_{1, u}(H)+2 \lambda^{2} v_{2, u}(H)\right) n^{-1}
$$

- [Breuer, Major, 1983]

$$
\operatorname{Var}\left(V_{\lambda, n}^{B}(u)\right) \underset{n \rightarrow+\infty}{\sim} 2 \lambda^{2} v_{2, u}(H) n^{-1},
$$

$$
\text { and } \sqrt{n}\left(V_{\lambda, n}^{B}(u)-\mathbb{E}\left(V_{\lambda, n}^{B}(u)\right)\right) \underset{n \rightarrow+\infty}{\stackrel{d}{\rightarrow}} \mathcal{N}\left(0,2 \lambda^{2} v_{2, u}(H)\right) \text {. }
$$

Estimation on a fixed interval

For $u \in \mathbb{N}^{*}$, we replace $V_{\lambda, n}^{F}(u)$ by :

$$
W_{\lambda, n}^{F}(u)=\frac{1}{n} \sum_{k=0}^{n-1}\left(F_{\lambda, H}\left(\frac{k+u}{n}\right)-F_{\lambda, H}\left(\frac{k}{n}\right)\right)^{2},
$$

Then $\mathbb{E}\left(W_{\lambda, n}^{F}(u)\right)=n^{-2 H} \mathbb{E}\left(V_{\lambda, n}^{F}(u)\right)=\lambda C_{H, 1} u^{2 H} n^{-2 H}=\mathbb{E}\left(W_{\lambda, n}^{B}(u)\right)$.

- $W_{\lambda, n}^{F}(u) \stackrel{d}{=} V_{\lambda n^{-2 H}, n}^{F}(u)$ and

$$
\operatorname{Var}\left(\frac{W_{\lambda, n}^{F}(u)}{\mathbb{E}\left(W_{\lambda, n}^{F}(u)\right)}\right) \underset{n \rightarrow+\infty}{\sim} \frac{v_{1, u}(H)}{\lambda C_{H, 1}^{2} u^{4 H}} n^{-(1-2 H)} .
$$

- $W_{\lambda, n}^{B}(u) \stackrel{d}{=} n^{-2 H} V_{\lambda, n}^{B}(u)$ and

$$
\operatorname{Var}\left(\frac{W_{\lambda, n}^{B}(u)}{\mathbb{E}\left(W_{\lambda, n}^{B}(u)\right)}\right) \underset{n \rightarrow+\infty}{\sim} \frac{2 v_{2, u}(H)}{C_{H, 1}^{2} u^{4 H}} n^{-1} .
$$

Estimation on a fixed interval

$$
\begin{gathered}
\widehat{H}_{n}^{F}(u, v)=\frac{1}{2} \log \left(\frac{W_{\lambda, n}^{F}(u)}{W_{\lambda, n}^{F}(v)}\right) / \log \left(\frac{u}{v}\right) \text { for } u \neq v \\
\widehat{H}_{n^{\gamma}}^{F}(u, v) \underset{n \rightarrow+\infty}{\longrightarrow} H \text { a.s. if } \gamma>(1-2 H)^{-1}
\end{gathered}
$$

Gaussian case [lstas, Lang, 1997] for all $H \in(0,1), \widehat{H}_{n}^{B}(u, v) \underset{n \rightarrow+\infty}{\longrightarrow} H$ a.s., with asymptotic normality if $H \in(0,3 / 4)$.

Bias $H-\widehat{H}_{n}(u, v)$

standard deviation

Figure: $\mathrm{fPp}(-)$ and $\mathrm{fBm}(\cdot)$ with $n=2^{11}, \lambda=1,(u, v)=(1,2)(0)$, $(u, v)=(1,4)\left({ }^{*}\right)$ on 100 realizations.

Application : fractal analysis in medical imaging

Goal : use fractal analysis to characterized self-similarity with a fractal index $H \in(0,1)$ and extract some helpfull informations for diagnosis

Numerous methods and studies! [Lopes and Betrouni, 2009]
Quadratic variations method : image $\left(I\left(k_{1}, k_{2}\right)\right)_{0 \leq k_{1}, k_{2} \leq n-1}$

- Extract a line from the image $\left(L_{\theta}(k)\right)_{0 \leq k \leq n_{\theta}-1}$ for θ a direction.
- Compute $v_{\theta}(u)=\frac{1}{n_{\theta}-u} \sum_{k=0}^{n_{\theta}-1-u}\left(L_{\theta}(k+u)-L_{\theta}(k)\right)^{2}$.
- Average along several lines of the same direction $\overline{v_{\theta}}(u)$ and compute $\widehat{H}_{\theta}(u, v)=\frac{1}{2} \log \left(\frac{\overline{v_{\theta}}(u)}{\overline{V_{\theta}}(v)}\right) / \log \left(\frac{u}{v}\right)$.

Example : Bone Trabecular Micro-architecture

Data set : 211 numeric radiographs high-resolution of calcaneum (bone heel) standardized acquisition ROI 400×400 [Lespessailles et al., 2007] :

ROI

control case

osteoporotic case

- Validation of self-similarity using power spectrum and variograms methods for calcaneous bone [Benhamou et al, 94], and cancellous bone [Caldwell et al, 94]
- Discrimination of osteoporotic cases [Benhamou et al, 2001]

$$
\begin{array}{cc}
H_{\text {mean }}=0.679 \pm 0.053 & H_{\text {mean }}=0.696 \pm 0.030 \\
\text { (osteoporotic) } & \text { (control) }
\end{array}
$$

Example : Bone Trabecular Micro-architecture

Implementation issues

$$
\begin{aligned}
& \text { Black }=\text { out of lattice. } \\
& \text { Precision of } \\
& \text { red }=1 \text {, green }=\sqrt{2}
\end{aligned}
$$

- Estimation on oriented lines without interpolation.
- Precision is not the same in all directions.
- Accuracy of orientation analysis \leftrightarrow Precision of the image.

Example : Bone Trabecular Micro-architecture

Bone radiographs (211 cases) : log-log plot of mean quadratic variations

$\theta_{\mathbf{1}}=(1,0), H_{\theta_{\mathbf{1}}}=0.51 \pm 0.08$

$\theta_{2}=(0,1), H_{\theta_{2}}=0.56 \pm 0.06$

$\theta_{3}=(1,1) / \sqrt{2}, H_{\theta_{3}}=0.51 \pm 0.08$
$\theta_{4}=(-1,1) / \sqrt{2}, H_{\theta_{4}}=0.51 \pm 0.09$ [Benhamou, HB, Richard, 2009]

Example : Bone Trabecular Micro-architecture

Comparison of the index in different directions

$H_{\theta_{3}}$ vs $H_{\theta_{1}}$

$H_{\theta_{2}}$ vs $H_{\theta_{1}}$

$H_{\theta_{4}}$ vs $H_{\theta_{1}}$

$H_{\theta_{3}}$ vs $H_{\theta_{2}}$

$H_{\theta_{4}}$ vs $H_{\theta_{3}}$

$H_{\theta_{4}}$ vs $H_{\theta_{2}}$
$1: \theta_{1}=(1,0)$ (horizontal), $2: \theta_{2}=(0,1)$ (vertical),
$3: \theta_{3}=(1,1) / \sqrt{2}$ (diagonal), $4: \theta_{4}=(-1,1) / \sqrt{2}$ (diagonal).

Example: Mammograms

dense breast tissue

fatty breast tissue

- Validation of self-similarity using a power spectrum method [Heine et al, 2002]

$$
H \in[0.33,0.42] .
$$

- [HB, Richard, 2010] using variogram method on 58 cases with 2 mammograms ROI 512×512

$$
H=0.31 \pm 0.05
$$

- Discrimination of dense and fatty breast tissue using a wavelet method (WTMM) [Kestener et al, 2001]

$$
H \in[0.55,0.75] \quad H \in[0.2,0.35]
$$

(dense tissues) (fatty tissues)

Spot detection on mammograms

Simulated spot with identical contrast on a mammogram [Grosjean, Moisan, 2009]

Link between size and contrast for spot detection Burgess' law [Burgess et al, 2001]

Simulated spot with identical contrast on simulated fields 512×512

References

國 C．L．Benhamou，H．Biermé and F．Richard（2009）：Analysis of texture anisotropy based on some Gaussian fields with spectral density．Proc．MICCAI，12th Int．Conference，London．

H．Biermé，Y．Demichel and A．Estrade（2013）：Fractional Poisson field and Fractional Brownian field ：why are they resembling but different？ECP，18（11），1－13．

B．Biermé and O．Durieu（2014）：Invariance principles for self－similar set－indexed random fields．Trans．of AMS，366（11）， 5963－5989．

䡒 R．Lopes and N．Betrouni（2009）：Fractal and multifractal analysis ：a review．Med．Image Anal．13（4），634－649．

嗇 G．Samorodnitsky and M．S．Taqqu（1991）：Stable non－Gaussian random processes．Chapman \＆Hall．

