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Last talk: Navier-Stokes flow in a laminar regime.

Linear model for the boundary layer due to roughness.
Question: Examples of nonlinear models for the boundary layer ?

First example: Non-newtonian flows, with power law (work with A.
Wroblewska).

—divS(Du)+Vp=e inQF°,
divu=10 inQ°%, (NN)

ulre =0,  ulxg,=1=0.

where | S(A) = v|AP2A|.

Interesting case: 1 < p <2 (p = 2: newtonian).
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For simplicity: periodicity of the roughness profile w.

Again, the limit of u° is u°, satisfying Dirichlet at the artificial
boundary.

Modified Poiseuille flow: | u®(x) = (U(x2),0) | with

-1 — =L 1 _»
U(x) = Lp (\/5 =1 — /20D |5, — 5’”5 )

Again, one can improve things by addition of a corrector :

uf(x) ~ u0(x) 4 ev(x/e)

Formally, in the boundary layer.

Duf ~ v (DUO|X2:0 + DV(Y)) , y=x/e

!
We denote A := D(u)] =0+ = 3 <U/(z0) Uc()O))
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Boundary layer system of the type:

—divS(A+ Dv)+Vqg=0 inSQy,
divv =0 inQy, (BL)

V‘rb/ = .

Again, one can show exponential convergence of v to v, = (V,0).

One can show that the best homogenized condition is of the form

Uy = 07 u = eF (52U1|y2:o)

F is a nonlinear functional connected to the boundary layer pb.

Second example: Rotating fluids
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1. Rotating NS equations

Context: A fluid between two planes, in rotation.

In the rotating frame, two pseudo-forces

» The centrifugal force: ‘ pw? V(¢ + x3) ‘

Transparent in incompressible models !

» The Coriolis force : with e = e3.

Rotating NS:

(Btu+u-Vu)+Qe><u+vpp—yAu—0,

divu =0,

Ulx=o,. = 0.
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Dimensional analysis:

/ /

L
x=Lx, u= U, t= 5t p=pU%p

Dropping the primes, one finds

Ro(Otu+u-Vu)+Vp+exu—EAu=0,

divu =0,
U|x;=0,1 = 0.
Ro := % : Rossby number. E := &7z : Ekman number.

Remark: possible variations, inspired by geophysics.
Variation 1: Top plane corresponds to ocean surface.
Rigid lid approximation, forcing by the wind :

D(u)n x n|y,—0 = f, u-nlyu= =0.
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Variation 2: Anisotropic eddy viscosities : v, v3. Often : v3 < vy
(the Ekman number is then based on v3).

Crucial point: Ro and E are small parameters:

» large scale oceanic or atmospheric motions (L = 10°m)

Ro~1072-10"!, E~1072

» Earth's core:

Ro~ 1077, E~1071°

In what follows, for simplicity: Ro=¢, E = 2, ex 1.

X \Y4
eXU L YP _cau=o,
13

divu =0, (NSC)

Ulxs=0,1 = 0.

Otu+u-Vu+
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Remark: Standard results on Navier-Stokes transpose to this case.
The Coriolis term disappears from energy estimates.

Weak convergence of u€ in L>°(L?). Description of the limit u° ?

Mathematical interest:

» Penalized operator: e 1P(e x -). Skew-symmetric over L2.
Generates high frequency waves.
Analogy with weakly compressible flows (acoustic waves).

» Vanishing diffusion : —Au. In domains with boundaries,
antagonism between the Dirichlet condition and the behaviour
of the formal limit v (that is in the kernel of the Coriolis
operator).

— Ekman boundary layers.

Q
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2. The Ekman layer

Question: Asymptotic behaviour of u® ?

Weak compactness : u? satisfies the geostrophic balance

exu® +Vp®=0, divi®=0

and the boundary condition m.

Applying the curl to the first equation yields: 93u® = 0.

Finally : | u® = (un(t, x,0) = (v1(t, xn), ua(t, xn), 0)

Incompatible with the Dirichlet condition: Gradients of u® must
explode near the boundary as € — 0, in a boundary layer.

Formal asymptotic expansion:

X; X;
ut(t,x) = u0(t,x) +u° (t,xh, ;) + u3_ (t,xh, ;)
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ur = ul(t,x1,x2,2) : boundary layer correctors. *

Defined for z € R,.. One expects u2 —— 0
z—+00

From the divergence equation :

Equation for the horizontal part: taking v = (u_ 1, u_ »),

Ug:73 =0

vt —92v =0

Simple ODE ! t, x1, x» are just parameters.

Boundary condition :

Vl(t7Xh70) = 7”?(taxh)a V2(taXha0) = 7ug(tvxh)-

The solution is the famous Ekman spiral:

(vi +iv)(z) = —(u? + iug) exp <—

)
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Question: Dynamics away from the boundary ? Equation on 9 ?

Go on with the expansion :

N ) T R (o e Tl

From the divergence-free condition: 31Ui,1 + 82ui72 + 8zui,3 =0.

Allows to compute explicitly Uia-

Back to the interior:

et + 1l - Vpud + uf + Vppt = 0|

Introducing w® = 9119 — G uf:

9 + ug - Vpwo — 83u% =0.
Integrate between x3 = 0 and x3 = 1.

0, .0 1 1
Ow” + up - Vpwo + Uy 3]z=0 — uZ 3]z=0 = 0.
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A little computation provides:

O’ + 1 - WO + V20 =0

Damped Euler, due to Ekman pumping.
Question: Rigorous justification of this limit ?

Need to compare the exact solution to the boundary layer
approximation

X3 X3
ug = uo(x) +u° <X1,X2,6) + ug <X1,X2,€> + ...

Hope:

lule=0 = ile=ollz = 0 = sup |lu" —ugll;2 —O.
€[o0, 7]

Remark: We consider well-prepared initial data
Perturbation v® = u® — uf satisfies

Vqg®+ex v

Orv® + (U +v) - Vv +
£

+ v -Vu; —eAve =0

12
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Energy estimate:
SOl +2 [ 19V gy < 31O+ [ [P

b: [Vu§| ~ %]@uo, (

o |35

)|

(neglecting the upper boundary layer). Naive control gives
1 1 <
Sl < SIV O

Better idea:

€12 € |V€|2 (X3)2 0o (X3
J P < [ sl ()]
< e sup |2%0,u° (2)| / [P
 zeR+ o (X3)2

< Ce sup |220,u° /\83v5|2 (Hardy inequality)
zeRT
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Controlled by the diffusion term if sup,cp+ [220,u° (2)| small
enough...

Back to units: the stability estimate is obtained if

U” supt,Xl,XQ UOHLOO LE

R =

v

is small enough.

It is a Reynolds number based on the boundary layer length.

Idea: the keypoint is the stability of the normalized Ekman spiral:

= (v1(2), v2(2), 0) with
vi +iva(z) = e v2©

seen as a solution of

R

1
{Btu_+u_~Vu_+e><u+Vp_—AU:O
divU = 0.
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The threshold is the critical Reynolds number R. of spectral
stability for the linearized equation :

1
Otu_+V -Vu_~+u_-Vu_Vp_ — EAU_ =0

» Convergence of uf to u® if R < R.: [Rousset'2005].
» Non-convergence if R > R.: [Desjardins-Grenier'2000].

Back to the main topic of the talks...

Question : How is the Ekman layer affected by roughness ?
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3. Couche d'Ekman rugueuse

Q= {X, xp = (x1,%2) €ER?, 1> x3 > 17’Y(Xh/77)}

v = v(yp) is Lipschitz, bounded and periodic: yn = (y1,y2) € T2.

TS eSS e 0
S 0 0 )

8@
:’ O
i
hd
OO
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We choose the scaling |Ro ~ EY? ~ 1| and call £ this common

parameter. This choice of scaling is the richest.

atu—&—u-Vu—l—exu—l—@—z—:Au:O,
€ €

divu =0,

U‘agezo.

(NSC)

Theorem: Let T > 0. For well-prepared and small enough initial
data uf, u® converges in L>(0, T; L?) to u®(t, x) = (un(t, xn),0)

satisfying

Orup + up - Vup+Vp+ B(up) =0, divup=0

in R?

where 3 : B(0,0) C R? — R? is defined for small § > 0 and

dissipative: | 3(U) - U > 0 for all U € R?\ {0} |.
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Remark: Without roughness: 3(v) = v/2v. In such case, possible
global results in time.

Ideas of the proof

New asymptotic expansion. Neglecting the upper layer:

u(x) = u®(t, xp) + v (t,Xh, Z)

with v = v(t, xp, y) = v(t, xn, y1, Y2, ¥3): boundary layer corrector.

Boundary layer system, in Qpr = {y, y3 > v(y1,¥2)}:

(v+¢) - Vv+Vp+exv—puAv=0 inQy
divv=0 in Qb/ (BL2)

vlg, = —¢-

with ¢ = u%(t, x;) € R? x {0}.
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Remarks:
» V=V,, A=A,: PDE in variable y, parametrized by t, x.
» Linear ODE replaced by nonlinear PDE !

Proceeding with the same methodology as in the flat case, we find:

ﬁ(U)—/QbIGXVU

where vy is the solution of (BL2) associated to ¢ = (U, 0).
One can show : B(U)-U = [ |Vvy|? >0 for U # 0.
The keypoint is the analysis of (BL2).

Theorem: For |p| small enough, there exists a unique v such that

/ / |Vv(y)]2dy3dy1dy2 < 400
T2 Jy(y1,y2)

v and its derivatives decay exponentially fast as y3 — oc.
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Remark: Periodicity simplifies greatly the analysis.

» Well-posedness: variational formulation, in a space of periodic
functions in yp.

» Exponential decrease: compactness in y.

Analogue to the case of a channel (although vertical).
Poincaré for functions with zero horizontal average.

Estimates of Ladyzenskaya-Solonnikov can be adapted :
Saint-Venant estimates
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Roughness effect on dissipation

Theoretical and numerical study with E. Dormy (linearized): for
some configurations, roughness may decrease the dissipation:

Example : "Riblets" (one invariant direction)
» The imposed flow should be along the invariant direction

» The wavelength of the roughness should be

» neither too long (Ekman layer near an inclined plane).
» neither too short (fluid is kicked out of the roughness).
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Question : Quid about non-periodic roughness ?
Much more difficult : methods of (BL) do not apply to (BL2).
Work in progress with A.L. Dalibard. Variation of (BL2) :

v-Vv+Vp+exv—Av=0 inQyp
divv=0 in Qb/ (BL3)
vlgg, = ¢ € R? \ {0}.

"Conjecture" : For || small enough, system (BL3) has a unique
solution v € HE (Qp) with

v(y)| < C(L+y3) Y3, Yy € Q.

Remark: Loss of exponential decrease. CV to zero persists.

Remark: The tentative proof uses results from the linearized
analysis [Dalibard et Prange'2014].
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4. Drag computation for rough solids close to contact

Start:
A ball, in a viscous fluid, falling above a wall under the action of

(=

F(t) \

gravity.

Fluid and solid at time t : F(t), S(t).

Question : Does the ball touch the wall ?
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Archimedes (~ 265 B.C.): If ps > pF, collision.
Relies on the hydrostatic approximation :
Stress tensor : X = (—patm — pF g Z) k.

Force on the ball :

f = —psge,|S(t)| + / ¥n = (pF — ps) g15(t)] ex.
aS(t)

Pb : Molecular pressure and viscosity are neglected.
Refined model :

» Stokes or Navier-Stokes for the liquid.

> Classical laws of mechanics for the solid.

» The stress tensor at the solid surfaces includes the newtonian
tensor of the fluid.
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Surprise : In this framework, there is no collision between the
sphere and the wall !

Shown by [Brenner et al, 1963], [Cooley et al, 1969] for steady Stokes
flow.

Shown by [Hillairet'2005] for unsteady Navier-Stokes flow.

Question : What is the flaw of the Navier-Stokes model ? Why is
the drag overestimated ?

Refs : [Davis et al, 1986], [Barnocky et al, 1989], [Smart et al, 1989],
[Davis et al, 2003].

Idea : Nothing is as smooth as a sphere. The irregularity of the
solid surface can change the solids’ dynamics.

Aim: To obtain an approximate expression for the drag, for various
models of roughness.

1
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Pb: The original method of [Brenner et al, 1963] seems hard to
transpose.

One needs a method of drag computation not restricted to simple
geometries.

Joint work with Matthieu Hillairet.

The method extends partially to Navier-Stokes flows, but for the
talk: Stokes flow.
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3. "Approximate variational method" for drag computation

One rough solid above a rough wall.

S(t): rough sphere. P: rough plane. Fluid: F(t).
We denote h(t) := dist(5(t), P).

Restriction: the solid translates along a vertical axis.

Remarks:

» One needs good symmetry properties for the solid and the
wall. They will be satisfied in our models.

» The geometry of the domain in characterized by h:
S(t) = Sh(t) = h(t)e,+S, F(t) = Fh(t)7

S, = he, + S, Fj: domains frozen at distance h.
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Equations:

» Stokes equations in the fluid: x € F(t),t > 0:

|—Au +Vp =0,

divu = O.‘

» Classical mechanics for the solid:

0 _/ (2D(u)n — pn) do - &,

n : outward normal, D(u) =1 (Vu+ (Vu)?).

Boundary conditions: will have the following general form:

» No penetration: |u - n|p =0, (u — h(t) ez) “nlasy =01,

» Tangential stress

{ u X n|p
(u— h(t) ez) x nlasr)

-2 Bp D(u)n X n]p,
—2 fBs D(u)n x nlas(r).-
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Bs,Bp > 0: slip lengths.
If = 0: no-slip (Dirichlet). If > 0: slip (Navier).

Crucial remark: This system turns into an ODE
h(t) = —h(t) fn(e)- (ED)

with drag

fn = —/ (2D(up)n — ppn) do - e,
85

where (up, pp) solution of

—Aup+Vpy, =0, divu,=0,

up-nlp =0, (up— e)-nlgs, =0, s)
up X nlp = =2 Bp D(up)n x n|p

(un — ;) X nlps, = —2 Bs D(up)n x nlys,
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Remark: One can forget about the dynamics.

Goal: Study of f,, h small, for various models of roughness.

Model 1: Non-smooth surface.
Cylindrical coordinates : (r,0, z).
» P:{z=0}

» S : ball of radius 1, perturbed near the south pole by a C1:*
"tip", 0 < a < 1. Locally, for r < rp:

z=1—V1—-1r2 4 grtte

> Bp = fs =0.

Remark: Despite this irregularity, (Vup, pp) is smooth enough
(W=7 with s > 1/7) to define f,.
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Model 2: Wall law of Navier type.

» P:{z=0}.
» S : ball of radius 1.

> [Bp or s > 0.

Model 3: Oscillations of small amplitude and wavelength.

s Pz = (50},
with «y periodic, smooth, < 0, 4(0,0) = 0.

» S : ball of radius 1.
» Bp=Ps=0.

Remark: The study is limited to the case ¢ < h.
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Remark: Limit case : ¢ — 0, Bs,8p — 0:

One recovers the well-known case of a sphere and a plane.
Cooley-O'Neil, Cox-Brenner:

(which implies no-collision).

The study of roughness effects requires an approach that is not
restricted to simple geometries.

29
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Proposition (Expression of the drag for model 1):

Let B 1= ch*7.

> In the regime h— 0, 8 — O:

fy ~ 6%(1 + cB)| c=c(a) explicit.

> In the regime h — 0, 8 — oo (and ¢ = O(1)):

> Ifa> 1,
—4 a1 -
fp ~ ceTa h™ et | ¢ =c(a) explicit.
> If a= %,
‘fh ~ ce3|In h|‘ ¢ explicit.
> Ifa < 3,

‘f,, — f‘ﬁ% e n(||n¢|\‘ ~— () avnlicit 22 /40



Remarks:

» Collisions are allowed by the model for all & < 1. Not allowed
for C1'! boundaries.

» The more the boundary is irregular, the less the drag is.

» One recovers the classical result as ¢ = 0 (with a much
simpler proof).

Proposition (Expression of the drag for model 2):

» In the regime h — 0, Bs, Bp = O(1), with h/Bs or h/5p
uniformly lower bounded, one has

< fp < < c,C>0.

<
h h

» In the regime h — 0, Bs, Bp = O(1), with h/Bs — 0 and
h/Bp — 0, one has

11 1
fh_z”(@ F)“h“ro(@ BD>
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Remark:

» This roughness model also allows for collision,
if Bp and Bs > 0.

» Agrees with formal calculations of Hocking (1973)

Proposition (Expression of the drag for model 3):

In the regime ¢ < h < 1:

s 61
< < —
b+ ce + O(|In(h+¢)|) < fr < p + O(|Inhl)

Remark: With homogenization techniques, one has

o
h+ ae

fh ~

(if €/h — 0 fast enough.)
a explicit, associated to some boundary layer problem.
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3. Sketch of proof

Step 1: Variational characterization of the drag

fh = urg.lﬁrl]hgh(u) = Sh(uh).
for a good energy functional £, and a good admissible set Ay,

Dirichlet case (Models 1 and 3):  &xp(u) = / Vul?,  and
F
Ap = {u € HE(Fp), divu=0, ulp=0, ulgs, = ez}.
Navier case (Model 2):

En(u) = /Fh|Vu|2—l—;P/P\u><n|2—l—(ﬁls—l—l) /85h|(u—ez)><n|2,

Ay = {ue HY (R, divu—0, u-nlp—(u—e)- nlos, =0}
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Step 2: Approximate computation of fj,, via some relaxed
minimization problem.

Rough idea: To find &, < &, and Aj, D Ap, such that:

1. min 1, Ep(u) and the associate minimizer can be computed
easily.

2. The minimizer i, belongs to Aj,.

It follows that:

En(ln) < o < En(Tn)

If the relaxed pb is close enough to the original one, it yields a
good approximation of the drag.

Remark: this rough idea requires a few adaptations: modification
of the minimizer @i, to have it belong to Ay, ...
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Remark: The difficulty lies in the choice of the good relaxed
problem.

Example: Model 1 (C1 tip).

Idea: Simplification due to axisymmetry. The minimizer u = uy,
reads

1
u= —0,p(r,z)e, + ;8r(r¢)ez. (R)
with ¢ = — [ uy. One restricts to fields in Ay of the type (R).

Boundary conditions on ¢:
> Wall:

0,¢(r,0) =0, ¢(r,0)=0, (cl1)

» Near the south pole:
p
0z¢(r,h+7:(r)) =0, o(r,h+7(r)) = 2’ r<rn (c2)

Where ’}/E(r) =1 m+ €r1+o¢.
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ew) = [ 1026 + [ 102F + ...
h h

Idea: The first term is the leading one. Only the zone near r =0
matters.

Relaxed problem:

Ay = {u € HL_(Fp), satisfying (R)-(cl1)-(cl2) } ,

. 0 o)
&, (u) :/0 /0 16262 dz dr

1D minimization problems in z, parametrized by r. Minimizer:

V4

- — 2 —
h+%(r)), o(t) = t°(3 — 2t).

P(r.2) = SO
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The minimum for the relaxed problem (lower bound for f;) is

- 1 3dr
f, = 127r/ — dr
’ o (h+()3

= 127r/01( rdr r+ .. =1I(B) + ..

h_|_%2_|_€r1+a)3

+oo s3dr
Hp) = /o (1+ 5 + pstte)’

Integral with a parameter, the asymptotics of which can be
computed in all regimes.

Similar drag computations are available for the other models.
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