EXERCISES ON STABILITY CONDITIONS AND DONALDSON-THOMAS INVARIANTS

CIARAN MEACHAN

1. Stability Conditions

Exercise 1.1. Show that if $\sigma=(Z, \mathcal{P})$ is a stability condition on a triangulated category \mathcal{D} then each subcategory $\mathcal{P}(\phi) \subset \mathcal{D}$ is abelian.
(Hint: Observe that $\mathcal{P}(>\phi)$ is a t-structure and deduce that $\mathcal{P}((\phi, \phi+1])$ is abelian for any $\phi \in \mathbb{R}$.)

Solution. [Bri07, Lemma 3.4 \& 5.2] or [Huy11, Corollary 2.8].
Exercise 1.2. Show that a stability condition $\sigma=(Z, \mathcal{P})$ on a triangulated category \mathcal{D} is equivalent to giving a bounded t-structure on \mathcal{D} and a stability function on its heart \mathcal{A} with the Harder-Narasimhan property.
(Hint: Use Exercise 1.1.)
Solution. [Bri07, Proposition 5.3].
Exercise 1.3. Let X be a smooth projective variety with $\operatorname{dim}(X) \geq 2$. Show that $\operatorname{Coh}(X)$ cannot be the heart of a numerical stability condition $\sigma=(Z, \mathcal{A})$.
(Hint: Consider the image of skyscraper sheaves \mathcal{O}_{x} of points $x \in X$ under Z.)
Solution. [Tod09, Lemma 2,7] or [Huy11, Corollary 3.3]) when $\operatorname{dim}(X)=2$.
Exercise 1.4. Let X be a d-dimensional smooth projective variety, and $\mathcal{B}_{B, \omega}$ a tilting of $\operatorname{Coh}(X)$ with respect to μ_{ω}-stability. Show that any non-zero $E \in \mathcal{B}_{B, \omega}$ satisfies the following:
(1) $\omega^{d-1} \operatorname{ch}_{1}^{B}(E) \geq 0$.
(2) If $\omega^{d-1} \operatorname{ch}_{1}^{B}(E)=0$, then $\omega^{d-2} \operatorname{ch}_{2}^{B}(E) \geq 0, \operatorname{ch}_{0}^{B}(E) \leq 0$.
(3) If $\omega^{d-1} \operatorname{ch}_{1}^{B}(E)=\omega^{d-2} \operatorname{ch}_{2}^{B}(E)=\operatorname{ch}_{0}^{B}(E)=0$, then $E \in \operatorname{Coh}(X)$ with $\operatorname{dim} \operatorname{Supp}(E) \leq d-3$.

Deduce that $Z_{B, \omega}\left(\mathcal{B}_{B, \omega} \backslash\{0\}\right) \subset \mathbb{H}$ and $\left(Z_{B, \omega}, \mathcal{B}_{B, \omega}\right) \in \operatorname{Stab}(X)$ when $\operatorname{dim}(X)=2$.. (Hint: Use the Hodge-Index theorem and the Bogomolov inequality.)

Solution. [BMT14, Lemma 3.2.1], [Bri08, Lemma 6.2] or [AB13, Corollary 2.1] when $\operatorname{dim}(X)=2$. See [HL10, Section 3.4] for the Bogomolov inequality.

Exercise 1.5. Let C be a smooth projective curve C of genus $g(C)>0$. Show that all skyscraper sheaves \mathcal{O}_{x} of points $x \in C$, and all line bundles $\mathcal{L} \in \operatorname{Pic}(C)$ are stable with respect to a numerical stability condition $\sigma=(Z, \mathcal{P})$ on $\mathcal{D}(C)$.
(Hint: Use the fact (or try to prove) that if a coherent sheaf E is included in a triangle $Y \rightarrow E \rightarrow X \rightarrow Y[1]$ with $\operatorname{Hom}^{\leq 0}(Y, X)=0$ then $X, Y \in \operatorname{Coh}(C)$.)

Solution. [Mac07, Theorem 2.7] or [Huy11, Lemma 2.16].
Exercise 1.6. Show that the space of numerical stability conditions $\operatorname{Stab}(C)$ on $\mathcal{D}(C)$ of a smooth projective curve C of genus $g(C)>0$ over \mathbb{C} consists of exactly one $\widetilde{\mathrm{GL}}^{+}(2, \mathbb{R})$-orbit:

$$
\operatorname{Stab}(C) / \widetilde{\mathrm{GL}}^{+}(2, \mathbb{R}) \simeq\{\mathrm{pt}\}
$$

Think about what happens when $g(C)=0$, i.e. $C \simeq \mathbb{P}^{1}$?
(Hint: Observe the natural right action $\mathbb{C} \times \mathrm{GL}^{+}(2, \mathbb{R}) \rightarrow \mathbb{C} ;(z, M) \mapsto M^{-1} \cdot z$ via the identification $\mathbb{C} \simeq \mathbb{R}^{2}$. This gives rise to a natural action

$$
K(\mathcal{D})^{*} \times \mathrm{GL}^{+}(2, \mathbb{R}) \rightarrow K(\mathcal{D})^{*} ;(z, M) \mapsto M^{-1} \cdot z
$$

where $K(\mathcal{D})^{*}:=\operatorname{Hom}_{\mathbb{Z}}(K(\mathcal{D}), \mathbb{C})$, which can be lifted to an action on $\operatorname{Stab}(\mathcal{D})$ under the projection map $\pi: \operatorname{Stab}(\mathcal{D}) \rightarrow K(\mathcal{D})^{*} ;(Z, \mathcal{A}) \rightarrow Z$ (after taking the universal cover and the connected component ith positive determinant).)

Solution. [Bri07, Section 9], [Mac07, Theorem 2.7] or [Huy11, Theorem 2.15].
Exercise 1.7. Let X be a smooth projective K3 surface. The minimal (and hence stable) objects in $\mathcal{B}_{B, \omega}$ are precisely the skyscraper sheaves \mathcal{O}_{x} for all points $x \in X$ and shifts $F[1]$ of μ_{ω}-stable vector bundles F with $\mu_{\omega}(F)=B \cdot \omega$.

Solution. [Huy08, Proposition 2.2].
Exercise 1.8. Let X be a smooth projective surface and $\sigma=(Z, \mathcal{A})$ be a numerical stability condition on $\mathcal{D}(X)$ such that all skyscraper sheaves $\mathcal{O}_{x}, x \in X$, are σ-stable of phase 1 . Show that the heart \mathcal{A} of σ is of the form $\mathcal{B}_{B, \omega}$ for some $B, \omega \in \operatorname{NS}(X) \otimes \mathbb{R}$ with $\omega \in \operatorname{Amp}(X)$.

Solution. [Bri07, Proposition 10.3] or [Huy11, Theorem 3.2].
Exercise 1.9. Let X be a smooth projective threefold. For any $x \in X$, show that the skyscraper sheaf \mathcal{O}_{x} is a minimal object in $\mathcal{A}_{B, \omega}$.

Solution. [MP13, Proposition 2.1].
Exercise 1.10. Let $\mathcal{M}_{B, \omega}$ be the class of all objects $E \in \mathcal{B}_{B, \omega}$ such that
(1) E is $\nu_{B, \omega}$-stable,
(2) $\nu_{B, \omega}(E)=0$, and
(3) $\operatorname{Ext}_{\mathcal{M}}^{1}\left(\mathcal{O}_{x}, E\right)=0$ for any skyscraper sheaf \mathcal{O}_{x} of $x \in X$.

If $E \in \mathcal{M}_{B, \omega}$ then show that $E[1]$ is a minimal object of $\mathcal{A}_{B, \omega}$.
Solution. [MP13, Lemma 2.3].
Exercise 1.11. Let $0 \rightarrow E \rightarrow E^{\prime} \rightarrow Q \rightarrow 0$ be a non splitting short exact sequence in $\mathcal{B}_{B, \omega}$ with $Q \in \operatorname{Coh}^{0}(X), \operatorname{Hom}_{\mathcal{M}}\left(\mathcal{O}_{x}, E^{\prime}\right)=0$ for any $x \in X$, and $\omega^{2} \operatorname{ch}_{1}^{B}(E) \neq 0$. If E is $\nu_{B, \omega}$-stable then show that E^{\prime} is $\nu_{B, \omega}$-stable.

Solution. [LM12, Proposition 3.5].
Exercise 1.12. Let $E \in \mathcal{B}_{B, \omega}$ be a $\nu_{B, \omega}$-semistable object with $\nu_{B, \omega}(E)<+\infty$. Then show that $H_{\operatorname{Coh}(X)}^{-1}(E)$ is a reflexive sheaf.

Solution. [LM12, Proposition 3.1].
Exercise 1.13. Let $E \in \mathcal{B}_{B, \omega}$ be a $\nu_{B, \omega}$-stable object with $\nu_{B, \omega}(E)=0$. Then show that there exists $E^{\prime} \in \mathcal{M}_{B, \omega}$ (that is $E^{\prime}[1]$ is a minimal object in $\mathcal{A}_{B, \omega}$) such that

$$
0 \rightarrow E \rightarrow E^{\prime} \rightarrow Q \rightarrow 0
$$

is a short exact sequence in $\mathcal{B}_{B, \omega}$ for some $Q \in \operatorname{Coh}^{0}(X)$. Then deduce the requirement of (weak or strong) Bogomolov-Gieseker type inequality only for objects in $\mathcal{M}_{B, \omega}$.
(Hint: Use the fact that $\mathcal{A}_{B, \omega}$ is Noetherian.)
Solution. [MP13, Proposition 2.9].
Exercise 1.14. Let X be a smooth projective variety of dimension n. Let $\sigma=$ (Z, \mathcal{P}) be a locally finite numerical stability condition on $\mathcal{D}(X)$ such that all skyscraper sheaves \mathcal{O}_{x} of $x \in X$ are σ-stable with phase one. Then show the following:
(1) if $E \in \mathcal{P}((0,1])$ then $H_{\operatorname{Coh}(X)}^{i}(E)=0$ for $i \notin\{-n+1,-n+2, \ldots, 0\}$,
(2) if $E \in \mathcal{P}(1)$ is σ-stable then $E \cong \mathcal{O}_{x}$ for some $x \in X$, or E is a complex such that $H_{\operatorname{Coh}(X)}^{i}(E)=0$ for $i \notin\{-n+1,-n+2, \ldots,-1\}$, and
(3) if $E \in \operatorname{Coh}(X)$ then $E \in \mathcal{P}((-n+1,1])$.

Solution. [Bri08, Lemma 10.1] for the $n=2$ case.
Exercise 1.15. If $\sigma=(Z, \mathcal{P})$ is a locally finite numerical stability condition on $D^{b}(X)$, then observe that σ-stable objects in $\mathcal{P}(1)$ are minimal objects in the heart $\mathcal{P}((0,1])$. As a result of the above exercise, obtain that if $E \in \mathcal{P}(1)$ is stable then we have the following:
(1) when $\operatorname{dim} X=1, E \cong \mathcal{O}_{x}$ for some $x \in X$;
(2) when $\operatorname{dim} X=2, E \cong \mathcal{O}_{x}$ for some $x \in X$ or $E \cong F_{-1}[1]$ for some locally free sheaf F_{-1}; and
(3) when $\operatorname{dim} X=3, E \cong \mathcal{O}_{x}$ for some $x \in X$ or E is quasi isomorphic to a complex $0 \rightarrow F_{-2} \rightarrow F_{-1} \rightarrow 0$ of locally free sheaves, and so $H_{\operatorname{Coh}(X)}^{-2}(E)$ is a reflexive sheaf.

Solution. Compare this with Exercise 1.12.

2. Donaldson-Thomas Invariants

Exercise 2.1. Let X be a smooth projective variety over \mathbb{C} and H an ample divisor on X. Recall that the Hilbert polynomial of a coherent sheaf E of dimension d is given by

$$
\chi(E, m):=\chi(E \otimes \mathcal{O}(m H)):=\sum_{i=0}^{d}(-1)^{i} h^{i}(X, E \otimes \mathcal{O}(m H)) \quad \text { for any } m \in \mathbb{Z}
$$

Use Riemann-Roch to show that this can be written as

$$
\chi(E, m)=\alpha_{d} m^{d}+\alpha_{d-1} m^{d-1}+\cdots \quad \text { for } \alpha_{i} \in \mathbb{Q}
$$

(Hint: Use the fact that a line bundle L has Chern character $\operatorname{ch}(L)=\exp \left(c_{1}(L)\right)$.)
Solution. Direct computation or see [HL10, Lemma 1.2.1] for more details.
Exercise 2.2. Recall the theorem of Joyce-Song for a smooth projective CalabiYau threefolds: it says that for all $p \in \mathcal{M}_{H}^{s}(v)$, there exists an analytic open set $\mathcal{U} \subset \mathcal{M}_{H}^{s}(v)$ containing p such that $\mathcal{U}=\{d f=0\}$ for some holomorphic function $f: V \rightarrow \mathbb{C}$ on a complex manifold V. Then Behrend's constructible function is defined as

$$
\nu: \mathcal{M}_{H}^{s}(v) \rightarrow \mathbb{Z} ; p \mapsto(-1)^{\operatorname{dim} V}\left(1-\chi\left(M_{p}(f)\right)\right)
$$

where $M_{p}(f):=\{x \in V:\|x-p\|<\delta, f(x)=f(p)+\epsilon, 0<\epsilon \ll \delta \ll 1\}$ is the Milnor fibre of f at p. Show that if $\mathcal{M}_{S}^{s}(v):=\operatorname{Spec}\left(\mathbb{C}[t] / t^{m}\right)$ then $\nu \equiv m$.
(Hint: Find a complex manifold V with a holomorphic function f on it such that $\operatorname{Spec}\left(\mathbb{C}[t] / t^{m}\right)=\{d f=0\}$ and compute the Euler characteristic of the fibres.)

Solution. Set $V:=\operatorname{Spec}(\mathbb{C}[t])$ and $f:=t^{m+1}$. Then $\operatorname{dim} V=1$ and there are $m+1$ points in the fibre which implies $\chi\left(M_{p}(f)\right)=m+1$. In other words, we have $\nu:=(-1)^{\operatorname{dim} V}\left(1-\chi\left(M_{p}(f)\right)\right)=(-1)^{1}(1-(m+1))=m$.

Exercise 2.3. Recall that the "honest" curve count is defined as

$$
I_{\beta}^{\prime}(X):=\frac{I_{\beta}(X)}{M(-q)^{\chi(X)}}
$$

where $I_{\beta}(X):=\sum_{n} I_{n, \beta} q^{n}, I_{n, \beta}:=\mathrm{DT}_{H}(1,0,-\beta,-n)$ and

$$
M(q):=\prod_{m \geq 1}\left(1-q^{m}\right)^{-m}
$$

is the MacMahon function. If $\mathbb{P}^{1} \simeq C \hookrightarrow X$ is a contractible $(-1,-1)$-curve in a Calabi-Yau threefold then

$$
\begin{equation*}
\sum_{m \geq 0} I_{m[C]}(X) t^{m}=M(-q)^{\chi(X)} \cdot \prod_{k \geq 1}\left(1-(-q)^{k} t\right)^{k} \tag{1}
\end{equation*}
$$

Use this to show that

$$
I_{[C]}^{\prime}(X)=q-2 q^{2}+3 q^{3}-\cdots=\frac{q}{(1+q)^{2}}=\frac{1 / q}{(1+(1 / q))^{2}}
$$

Solution. Set $m=1$ and compute the coefficient of t. Indeed, Equation (1) says that

$$
I_{0}^{\prime}(X)+I_{[C]}^{\prime}(X) t+I_{[2 C]}^{\prime}(X) t^{2}+\cdots=(1+q t)\left(1-q^{2} t\right)^{2}\left(1+q^{3} t\right)^{3} \cdots
$$

and so $I_{[C]}^{\prime}(X)$ is equal to the coefficient of t on the right hand side.
Exercise 2.4. Recall from the lectures that we have

$$
\begin{aligned}
\sum_{\beta} I_{\beta}(X) t^{\beta} & =\prod_{n \geq 0} \exp \left((-1)^{n-1} n N_{n, 0} q^{n}\right) \cdot\left(\sum_{\beta} P_{\beta}(X) t^{\beta}\right) \\
& =\prod_{\substack{n \geq 0 \\
\beta \geq 0}} \exp \left((-1)^{n-1} n N_{n, \beta} q^{n} t^{\beta}\right) \cdot\left(\sum_{\beta} L_{\beta}(X) t^{\beta}\right)
\end{aligned}
$$

where $L_{\beta}(X):=\sum_{n \in \mathbb{Z}} L_{n, \beta} q^{n}$ is a polynomial of $q^{ \pm}$invariant under $q \leftrightarrow 1 / q$ and $N_{n, \beta} \in \mathbb{Q}, L_{n, \beta} \in \mathbb{Z}$ are such that $N_{n, \beta}=N_{-n, \beta}=N_{n+H \cdot \beta, \beta}, L_{n, \beta}=L_{-n, \beta}$ and $L_{n, \beta}=0$ for $|n| \gg 0$. Use this result to show that

$$
I_{\beta}^{\prime}(X)=\frac{I_{\beta}(X)}{M(-q)^{\chi}(X)}=P_{\beta}(X)
$$

Furthermore, use the periodicity of $N_{n, \beta}$ to show that $I_{\beta}^{\prime}(X)$ is a rational function of q, invariant under $q \leftrightarrow 1 / q$.

Solution. First observe that $\prod_{n \geq 0} \exp \left((-1)^{n-1} n N_{n, 0} q^{n}\right)$ is independent of β and so if we set $\beta=0$ then the first equality gives

$$
I_{0}(X)=\prod_{n \geq 0} \exp \left((-1)^{n-1} n N_{n, 0} q^{n}\right) \cdot P_{0}(X)
$$

Next, we see that $P_{0}(X)=1$ by definition of stable pairs and $I_{0}(X)=M(-q)^{\chi}(X)$ by Lecture 1 . Thus, we have $M(-q)^{\chi}(X)=\prod_{n \geq 0} \exp \left((-1)^{n-1} n N_{n, 0} q^{n}\right)$ and hence

$$
I_{\beta}^{\prime}(X):=\frac{I_{\beta}(X)}{M(-q)^{\chi}(X)}=\frac{\prod_{n \geq 0} \exp \left((-1)^{n-1} n N_{n, 0} q^{n}\right) \cdot P_{\beta}(X)}{M(-q)^{\chi}(X)}=P_{\beta}(X) .
$$

The rationality of $I_{\beta}^{\prime}(X)$ is proved in [Tod10, Lemma 4.6].

References

[AB13] Daniele Arcara and Aaron Bertram. Bridgeland-stable moduli spaces for K-trivial surfaces. J. Eur. Math. Soc. (JEMS), 15(1):1-38, 2013. With an appendix by Max Lieblich.
[BMT14] Arend Bayer, Emanuele Macrì, and Yukinobu Toda. Bridgeland stability conditions on threefolds I: Bogomolov-Gieseker type inequalities. J. Algebraic Geom., 23(1):117-163, 2014.
[Bri07] Tom Bridgeland. Stability conditions on triangulated categories. Ann. of Math. (2), 166(2):317-345, 2007.
[Bri08] Tom Bridgeland. Stability conditions on K3 surfaces. Duke Math. J., 141(2):241-291, 2008.
[HL10] Daniel Huybrechts and Manfred Lehn. The geometry of moduli spaces of sheaves. Cambridge Mathematical Library. Cambridge University Press, Cambridge, second edition, 2010.
[Huy08] Daniel Huybrechts. Derived and abelian equivalence of $K 3$ surfaces. J. Algebraic Geom., 17(2):375-400, 2008.
[Huy11] Daniel Huybrechts. Introduction to stability conditions. Arxiv preprint arXiv:1111.1745v2, 2011.
[LM12] Jason Lo and Yogesh More. Some examples of tilt-stable objects on threefolds. Arxiv preprint arXiv:1209.2749v1, 2012.
[Mac07] Emanuele Macrì. Stability conditions on curves. Math. Res. Lett., 14(4):657-672, 2007.
[MP13] Antony Maciocia and Dulip Piyaratne. Fourier-mukai transforms and bridgeland stability conditions on abelian threefolds. Arxiv preprint arXiv:1304.3887v3, 2013.
[Tod09] Yukinobu Toda. Limit stable objects on Calabi-Yau 3-folds. Duke Math. J., 149(1):157208, 2009.
[Tod10] Yukinobu Toda. Generating functions of stable pair invariants via wall-crossings in derived categories. In New developments in algebraic geometry, integrable systems and mirror symmetry (RIMS, Kyoto, 2008), volume 59 of Adv. Stud. Pure Math., pages 389-434. Math. Soc. Japan, Tokyo, 2010.

School of Mathematics, University of Edinburgh, Scotland

E-mail address: ciaran.meachan@ed.ac.uk

