How to treat the coupling issue of the Saint-Venant-Exner system of equations

Philippe Ung ${ }^{1,4}$
joint work with
Emmanuel Audusse ${ }^{1,2}$, Christophe Chalons ${ }^{3}$
${ }^{1}$ Team ANGE - CEREMA, Inria Rocquencourt, LJLL
${ }^{2}$ LAGA - Université Paris XIII
${ }^{3}$ LMV - Université de Versailles Saint-Quentin-en-Yvelines
${ }^{4}$ MAPMO - Université d'Orléans

> Egrin
> June $1^{\text {st }}, 2015$

Outline

Context \& Motivations

Numerical scheme

Test cases

Discussion

Context \& Motivations

Motivations

Framework

Sediments transport is responsible of modification of river beds. 2 processes of sediments transport:

■ by suspension: particles can be found on the whole vertical water depth and rarely be in contact with the bed,

- by bedload: particles are moving near the bed by saltation and rolling.

Figure: Processes of sediment transport.

Thereafter, we only focuse on the bedload transport.

Saint-Venant-Exner equations

The model
In the literature, most of industrial codes use the Saint-Venant-Exner model.

$$
\left\{\begin{array}{l}
\partial_{t} H+\partial_{x}(Q)=0 \tag{1a}\\
\partial_{t} Q+\partial_{x}\left(\frac{Q^{2}}{H}+\frac{g H^{2}}{2}\right)=-g H \partial_{x} B-\frac{\tau}{\rho} \\
\partial_{t} B+\partial_{x} Q_{s}=0
\end{array}\right.
$$

Coupled model between:

- the Saint-Venant equations (aka shallow-water equations): (1a)-(1b)

$H(t, x)$: water height, $Q(t, x)=H U$: discharge, $B(t, x)$: bottom topography, with $x \in \Omega \subseteq \mathbb{R}, t \geqslant 0$.

Saint-Venant-Exner equations
 The model

τ is defined by the Manning formula,

$$
\begin{equation*}
\tau=\rho g H \frac{Q|Q|}{H^{2} K_{s}^{2} R_{h}^{4 / 3}}, \tag{2}
\end{equation*}
$$

where, in the particular case of a rectangular channel with width I, the hydraulic radius R_{h} reads

$$
R_{h}=\frac{I H}{I+2 H}
$$

Saint-Venant-Exner equations
 The model

- the Exner equation (1c)
where $Q_{s}(t, x)$ is the solid transport flux defined by

$$
\begin{equation*}
Q_{s}=\sqrt{\frac{g\left(\rho_{s}-\rho\right) d^{3}}{\rho}} Q_{s}^{\star}\left(\tau^{\star} ; \tau_{c}^{\star}\right) \frac{\tau^{\star}}{\left|\tau^{\star}\right|} \tag{3}
\end{equation*}
$$

and the Meyer-Peter-Müller formula,

$$
\begin{equation*}
Q_{s}^{\star}=A\left(\left|\tau^{\star}\right|-\tau_{c}^{\star}\right)_{+}^{3 / 2} \tag{4}
\end{equation*}
$$

a constant,
ρ_{s}, ρ resp. the mass densities of the solid and fluid phases, the gravitational acceleration, the shear stress (aka Shields parameter), the critical value for the initiation of motion, the grain diameter.

Saint-Venant-Exner equations

The model

A more practical expression of the solid discharge

- Grass formula,

$$
\begin{equation*}
Q_{s}=A_{g} U|U|^{m-1} \tag{5}
\end{equation*}
$$

where A_{g} is an empirically determined constant and $0<m<4$.

Saint-Venant-Exner equations
 The model

The Saint-Venant-Exner equations can be rewritten in a vectorial form,

$$
\begin{equation*}
\partial_{t} \tilde{W}+\partial_{x} F(\tilde{W})=S(\tilde{W}) \tag{6}
\end{equation*}
$$

where

$$
\begin{gathered}
\tilde{W}=\left(\begin{array}{c}
H \\
H U \\
B
\end{array}\right), \quad F(\tilde{W})=\left(\begin{array}{c}
H U \\
H U^{2}+\frac{g H^{2}}{2} \\
Q_{s}
\end{array}\right), \\
S(\tilde{W})=\left(\begin{array}{c}
0 \\
-g H \partial_{x} B \\
0
\end{array}\right) .
\end{gathered}
$$

Quasilinear form:

$$
\partial_{t} \tilde{W}+A(\tilde{W}) \partial_{x} \tilde{W}=S(\tilde{W})
$$

where A is the jacobian matrix of F.

Motivations

Numerical aspect

Two strategies to approximate the solution of the system: splitting and non-splitting methods.

Motivations

Numerical aspect

Two strategies to approximate the solution of the system: splitting and non-splitting methods.

The problem of choice between these two methods remains when considering "fast flow" (Hudson et al, 2003 \& 2005):

Motivations

Numerical aspect

Two strategies to approximate the solution of the system: splitting and non-splitting methods.

The problem of choice between these two methods remains when considering "fast flow" (Hudson et al, 2003 \& 2005):

- the splitting method injects numerical instabilities,

Figure: Free surface (top) and Bottom topography (bottom)

Motivations

Numerical aspect

- the non-splitting method allows to correct these instabilities,
- Roe-type solver (Hudson et al. 2003 \& 2005, Murillo and Garcia-Navarro 2010),
- Intermediate Field Capturing Riemann solver (Pares 2006, Pares et al. 2011),
- Relaxation scheme (Delis et al. 2008, ABCDGJSGS 2011),
- Non Homogeneous Riemann solver (Benkhaldoun et al. 2009),
- Godunov-type method based on a three-waves Approximate Riemann Solver (ARS).

Numerical scheme

Numerical approximation

Properties \& Main definitions

- Positivity of water height,

$$
H \geqslant 0,
$$

Numerical approximation

Properties \& Main definitions

- Positivity of water height,

$$
H \geqslant 0,
$$

- Well-balanced property or ability to preserve steady states of the lake at rest,

$$
U=0, \quad H+B=C t e
$$

Numerical approximation

Properties \& Main definitions

■ Positivity of water height,

$$
H \geqslant 0,
$$

■ Well-balanced property or ability to preserve steady states of the lake at rest,

$$
U=0, \quad H+B=C t e
$$

■ Froude number,

$$
\begin{equation*}
F_{r}=\frac{|U|}{\sqrt{g H}} \tag{7}
\end{equation*}
$$

$F_{r}<1$ Fluvial regime,
$F_{r}=1$ Transcritical regime,
$F_{r}>1$ Torrential regime.

Numerical scheme

Objective

Main objective

Developping a non-splitted method to solve the Saint-Venant-Exner system.

Strategy

Propose a Godunov-type method to solve the Saint-Venant-Exner equations based on the design of a three-wave Approximate Riemann Solver which is able to degenerate to an ARS satisfying all these properties together when the solid flux is null, sufficiently easy to compute.

Numerical scheme

Discretization

Space discretization $\Omega, \forall i \in \mathbb{Z}$

N_{x} : Number of cells.
Time discretization $t \geqslant 0, \forall n \in \mathbb{N}$

$$
t^{n+1}=t^{n}+\Delta t^{n}, \quad \Delta t>0
$$

In the following, we denote

$$
\Delta x_{i}=\Delta x, \quad \Delta t^{n}=\Delta t
$$

Numerical scheme

Notations: $\forall X \in\{H, H U, B\}$,
$X_{L} \approx \frac{1}{\Delta x} \int_{-\Delta x}^{0} X(x) d x ; X_{R} \approx \frac{1}{\Delta x} \int_{0}^{\Delta x} X(x) d x ; X_{i} \approx \frac{1}{\Delta x} \int_{C_{i}} X(x) d x$.

Numerical scheme

Notations: $\forall X \in\{H, H U, B\}$,
$X_{L} \approx \frac{1}{\Delta x} \int_{-\Delta x}^{0} X(x) d x ; X_{R} \approx \frac{1}{\Delta x} \int_{0}^{\Delta x} X(x) d x ; X_{i} \approx \frac{1}{\Delta x} \int_{C_{i}} X(x) d x$.
At $t^{n}, \tilde{W}_{i}^{n}=\left(W_{i}^{n}, B_{i}^{n}\right)=\left(H_{i}^{n}, H_{i}^{n} U_{i}^{n}, B_{i}^{n}\right)^{T}$ a given piecewise constant approximate solution,

Numerical scheme

Main ideas

Notations: $\forall X \in\{H, H U, B\}$,
$X_{L} \approx \frac{1}{\Delta x} \int_{-\Delta x}^{0} X(x) d x ; X_{R} \approx \frac{1}{\Delta x} \int_{0}^{\Delta x} X(x) d x ; X_{i} \approx \frac{1}{\Delta x} \int_{C_{i}} X(x) d x$.
At $t^{n}, \tilde{W}_{i}^{n}=\left(W_{i}^{n}, B_{i}^{n}\right)=\left(H_{i}^{n}, H_{i}^{n} U_{i}^{n}, B_{i}^{n}\right)^{T}$ a given piecewise constant approximate solution,

■ Building an approximate solution of the Riemann problem at each interface $x_{i+1 / 2}$,

Numerical scheme

Main ideas

Notations: $\forall X \in\{H, H U, B\}$,
$X_{L} \approx \frac{1}{\Delta x} \int_{-\Delta x}^{0} X(x) d x ; X_{R} \approx \frac{1}{\Delta x} \int_{0}^{\Delta x} X(x) d x ; X_{i} \approx \frac{1}{\Delta x} \int_{C_{i}} X(x) d x$.
At $t^{n}, \tilde{W}_{i}^{n}=\left(W_{i}^{n}, B_{i}^{n}\right)=\left(H_{i}^{n}, H_{i}^{n} U_{i}^{n}, B_{i}^{n}\right)^{T}$ a given piecewise constant approximate solution,

■ Building an approximate solution of the Riemann problem at each interface $x_{i+1 / 2}$,
■ Definition of $\tilde{W}_{i}^{n+1}=\left(W_{i}^{n+1}, B_{i}^{n+1}\right)$ by calculating the average value of the juxtaposition of these solutions in each cell C_{i} at time t^{n+1}.

Numerical scheme

Riemann problem
A simple Approximate Riemann Solver composed by three waves propagating with velocities $\lambda_{L}, \lambda_{0}=0$ and λ_{R} such as

Figure: Local Riemann problem
gives an approximate Riemann solution associated with initial data

$$
(W(0, x), B(0, x))= \begin{cases}\left(W_{L}, B_{L}\right) & , x<0 \\ \left(W_{R}, B_{R}\right) & , x>0\end{cases}
$$

CFL condition:

$$
\Delta t<\frac{\Delta x}{2 \max \left(\left|\lambda_{L}\right|, \lambda_{R}\right)} .
$$

Numerical scheme

Consistency

Consistency

$$
F\left(\tilde{W}_{R}\right)-F\left(\tilde{W}_{L}\right)-S\left(\tilde{W}_{L}, \tilde{W}_{R}\right)=\lambda_{L}\left(\tilde{W}_{L}^{*}-\tilde{W}_{L}\right)+\lambda_{R}\left(\tilde{W}_{R}-\tilde{W}_{R}^{*}\right),
$$

with

$$
\lim _{\substack{\tilde{w}_{L}, \tilde{w}_{R} \rightarrow \tilde{w} \\ \Delta x \rightarrow 0}} \frac{1}{\Delta x} S\left(\tilde{W}_{L}, \tilde{W}_{R}\right)=\left(0,-g H \partial_{x} B, 0\right)^{T} .
$$

Relations of consistency in the integral form:

$$
\left\{\begin{array}{l}
H_{R} U_{R}-H_{L} U_{L}=\lambda_{L}\left(H_{L}^{\star}-H_{L}\right)+\lambda_{R}\left(H_{R}-H_{R}^{\star}\right), \\
\left(H_{R} U_{R}^{2}+\frac{g H_{R}^{2}}{2}\right)-\left(H_{L} U_{L}^{2}+\frac{g H_{L}^{2}}{2}\right)+g \Delta x\left\{H \partial_{x} B\right\} \\
\quad=\lambda_{L}\left(H_{L}^{\star} U_{L}^{\star}-H_{L} U_{L}\right)+\lambda_{R}\left(H_{R} U_{R}-H_{R}^{\star} U_{R}^{\star}\right), \\
Q_{s R}-Q_{s L}=\lambda_{L}\left(B_{L}^{\star}-B_{L}\right)+\lambda_{R}\left(B_{R}-B_{R}^{\star}\right) . \tag{10}
\end{array}\right.
$$

Numerical approximation of the Saint-Venant-Exner equations

Definition of the intermediate states
Relations of continuity across the stationary wave:

$$
\left\{\begin{array}{l}
H_{L}^{\star}+B_{L}^{\star}=H_{R}^{\star}+B_{R}^{\star} \tag{11}\\
H_{L}^{\star} U_{L}^{\star}=H_{R}^{\star} U_{R}^{\star}
\end{array}\right.
$$

We add a minimization problem

$$
\begin{aligned}
& \min F\left(B_{L}^{\star}, B_{R}^{\star}\right)=\left(\left\|B_{L}-B_{L}^{\star}\right\|^{2}+\left\|B_{R}-B_{R}^{\star}\right\|^{2}\right) \\
& \text { u.c. } \lambda_{L}\left(B_{L}^{\star}-B_{L}\right)+\lambda_{R}\left(B_{R}-B_{R}^{\star}\right)-\left(Q_{s R}-Q_{s L}\right)=0
\end{aligned}
$$

Numerical approximation of the Saint-Venant-Exner equations

Definition of the intermediate states
Relations of continuity across the stationary wave:

$$
\left\{\begin{array}{l}
H_{L}^{\star}+B_{L}^{\star}=H_{R}^{\star}+B_{R}^{\star} \tag{11}\\
H_{L}^{\star} U_{L}^{\star}=H_{R}^{\star} U_{R}^{\star}
\end{array}\right.
$$

We add a minimization problem

$$
\begin{gather*}
\min F\left(B_{L}^{\star}, B_{R}^{\star}\right)=\left(\left\|B_{L}-B_{L}^{\star}\right\|^{2}+\left\|B_{R}-B_{R}^{\star}\right\|^{2}\right) \\
\text { u.c. } \lambda_{L}\left(B_{L}^{\star}-B_{L}\right)+\lambda_{R}\left(B_{R}-B_{R}^{\star}\right)-\left(Q_{s R}-Q_{s L}\right)=0 \\
B_{L}^{\star}=B_{L}+\frac{\lambda_{L}}{\lambda_{L}^{2}+\lambda_{R}^{2}} \Delta Q_{s} \tag{13}\\
B_{R}^{\star}=B_{R}-\frac{\lambda_{R}}{\lambda_{L}^{2}+\lambda_{R}^{2}} \Delta Q_{s} \tag{14}
\end{gather*}
$$

Numerical scheme

Definition of the intermediate states: Well-balanced property

$$
\begin{gather*}
Q^{\star}:=H_{L}^{\star} U_{L}^{\star}=H_{R}^{\star} U_{R}^{\star}, \\
Q^{\star}=Q_{H L L}-\frac{g}{\lambda_{R}-\lambda_{L}} \Delta x\left\{H \partial_{x} B\right\}, \tag{15}
\end{gather*}
$$

with

$$
Q_{H L L}=\frac{\lambda_{R} H_{R} U_{R}-\lambda_{L} H_{L} U_{L}}{\lambda_{R}-\lambda_{L}}-\frac{\left(H_{R} U_{R}^{2}+\frac{g H_{R}^{2}}{2}\right)-\left(H_{L} U_{L}^{2}+\frac{g H_{L}^{2}}{2}\right)}{\lambda_{R}-\lambda_{L}}
$$

Numerical scheme

Definition of the intermediate states: Well-balanced property

$$
\begin{gather*}
Q^{\star}:=H_{L}^{\star} U_{L}^{\star}=H_{R}^{\star} U_{R}^{\star}, \\
Q^{\star}=Q_{H L L}-\frac{g}{\lambda_{R}-\lambda_{L}} \Delta x\left\{H \partial_{\star} B\right\}, \tag{15}
\end{gather*}
$$

with

$$
Q_{H L L}=\frac{\lambda_{R} H_{R} U_{R}-\lambda_{L} H_{L} U_{L}}{\lambda_{R}-\lambda_{L}}-\frac{\left(H_{R} U_{R}^{2}+\frac{g H_{R}^{2}}{2}\right)-\left(H_{L} U_{L}^{2}+\frac{g H_{L}^{2}}{2}\right)}{\lambda_{R}-\lambda_{L}},
$$

Well-balanced property ensures by

$$
\left\{H \partial_{x} B\right\}= \begin{cases}\frac{H_{L}+H_{R}}{2 \Delta x} \min \left(H_{L}, \Delta B\right) & \text { if } \Delta B^{\star} \geqslant 0 \\ \frac{H_{L}+H_{R}}{2 \Delta x} \max \left(-H_{R}, \Delta B\right) & \text { if } \Delta B^{\star}<0\end{cases}
$$

Numerical approximation of the Saint-Venant-Exner equations
Definition of the intermediate states: Positivity of the water height

$$
\begin{align*}
H_{L}^{\star} & =H_{H L L}+\frac{\lambda_{R}}{\lambda_{R}-\lambda_{L}} \Delta B^{\star} \tag{17}\\
H_{R}^{\star} & =H_{H L L}+\frac{\lambda_{L}}{\lambda_{R}-\lambda_{L}} \Delta B^{\star} \tag{18}
\end{align*}
$$

with

$$
\begin{equation*}
H_{H L L}=\frac{\lambda_{R} H_{R}-\lambda_{L} H_{L}}{\lambda_{R}-\lambda_{L}}-\frac{1}{\lambda_{R}-\lambda_{L}}\left(H_{R} U_{R}-H_{L} U_{L}\right) \tag{19}
\end{equation*}
$$

Numerical approximation of the Saint-Venant-Exner

 equationsDefinition of the intermediate states: Positivity of the water height

$$
\begin{align*}
H_{L}^{\star} & =H_{H L L}+\frac{\lambda_{R}}{\lambda_{R}-\lambda_{L}} \Delta B^{\star} \tag{17}\\
H_{R}^{\star} & =H_{H L L}+\frac{\lambda_{L}}{\lambda_{R}-\lambda_{L}} \Delta B^{\star} \tag{18}
\end{align*}
$$

with

$$
\begin{equation*}
H_{H L L}=\frac{\lambda_{R} H_{R}-\lambda_{L} H_{L}}{\lambda_{R}-\lambda_{L}}-\frac{1}{\lambda_{R}-\lambda_{L}}\left(H_{R} U_{R}-H_{L} U_{L}\right) \tag{19}
\end{equation*}
$$

If $\Delta B^{\star} \geqslant 0$,	If $\Delta B^{\star}<0$,
$\lambda_{R} \tilde{H}_{R}^{\star}=\max \left(\lambda_{R} H_{R}^{\star}, 0\right)$,	$\lambda_{L} \tilde{H}_{L}^{\star}=\max \left(\lambda_{L} H_{L}^{\star}, 0\right)$
$\lambda_{L} \tilde{H}_{L}^{\star}=\lambda_{L} H_{L}^{\star}-\lambda_{R}\left(H_{R}^{\star}-\tilde{H}_{R}^{\star}\right)$,	$\lambda_{R} \tilde{H}_{R}^{\star}=\lambda_{R} H_{R}^{*}-\lambda_{L}\left(H_{L}^{\star}-\tilde{H}_{L}^{\star}\right)$

Numerical approximation of the Saint-Venant-Exner equations

Definition of the wave velocities

The main issue comes from the choice of λ_{L} and λ_{R}.

Numerical approximation of the Saint-Venant-Exner equations
Definition of the wave velocities

The main issue comes from the choice of λ_{L} and λ_{R}. Recall

$$
A(\tilde{W})=\left[\begin{array}{ccc}
0 & 1 & 0 \\
g H-U^{2} & 2 U & g H \\
\tilde{\alpha} & \tilde{\beta} & 0
\end{array}\right]
$$

where $\tilde{\alpha}=\frac{\partial Q_{s}}{\partial H}$ and $\tilde{\beta}=\frac{\partial Q_{s}}{\partial Q}$.

Numerical approximation of the Saint-Venant-Exner equations
Definition of the wave velocities

The main issue comes from the choice of λ_{L} and λ_{R}. Recall

$$
A(\tilde{W})=\left[\begin{array}{ccc}
0 & 1 & 0 \\
g H-U^{2} & 2 U & g H \\
\tilde{\alpha} & \tilde{\beta} & 0
\end{array}\right]
$$

where $\tilde{\alpha}=\frac{\partial Q_{s}}{\partial H}$ and $\tilde{\beta}=\frac{\partial Q_{s}}{\partial Q}$.
Characteristic polynomial of A :

$$
\begin{equation*}
p_{A}(\lambda)=\lambda^{3}-2 U \lambda^{2}-\left(g H(1+\tilde{\beta})-U^{2}\right) \lambda-g H \tilde{\alpha}=0 . \tag{20}
\end{equation*}
$$

Numerical approximation of the Saint-Venant-Exner equations
 Definition of the wave velocities: Nickalls' bounds (2011)

Derivative quadratic equation of p_{A} :

$$
\begin{equation*}
3 \lambda^{2}-4 U \lambda-\left(g H(1+\tilde{\beta})-U^{2}\right)=0 . \tag{21}
\end{equation*}
$$

Numerical approximation of the Saint-Venant-Exner equations
Definition of the wave velocities: Nickalls' bounds (2011)

Derivative quadratic equation of p_{A} :

$$
\begin{equation*}
3 \lambda^{2}-4 U \lambda-\left(g H(1+\tilde{\beta})-U^{2}\right)=0 . \tag{21}
\end{equation*}
$$

The solutions are

$$
\begin{equation*}
\lambda_{ \pm}=x_{0} \pm \Omega \tag{22}
\end{equation*}
$$

such as $x_{0}=\frac{2 U}{3}$ and $\Omega=\frac{1}{3} \sqrt{U^{2}+3 g H(1+\tilde{\beta})}$.

Numerical approximation of the Saint-Venant-Exner equations
Definition of the wave velocities: Nickalls' bounds (2011)

Derivative quadratic equation of p_{A} :

$$
\begin{equation*}
3 \lambda^{2}-4 U \lambda-\left(g H(1+\tilde{\beta})-U^{2}\right)=0 . \tag{21}
\end{equation*}
$$

The solutions are

$$
\begin{equation*}
\lambda_{ \pm}=x_{0} \pm \Omega \tag{22}
\end{equation*}
$$

such as $x_{0}=\frac{2 U}{3}$ and $\Omega=\frac{1}{3} \sqrt{U^{2}+3 g H(1+\tilde{\beta})}$.
The wave velocities are defined by

$$
\begin{align*}
\lambda_{L} & =x_{0}-2 \Omega, \tag{23}\\
\lambda_{R} & =x_{0}+2 \Omega . \tag{24}
\end{align*}
$$

Numerical scheme

Summary

Associated Godunov-type scheme

$$
\left\{\begin{array}{l}
\tilde{W}_{i}^{n+1}=\tilde{W}_{i}^{n}-\frac{\Delta t^{n}}{\Delta x}\left(F_{i+1 / 2}^{-}-F_{i-1 / 2}^{+}\right), \\
\tilde{W}_{i}^{0}=\frac{1}{\Delta x}\left(\int_{C_{i}} H_{0}(x) d x, \int_{C_{i}}\left(H_{0} U_{0}\right)(x) d x, \int_{C_{i}} B_{0}(x) d x\right)^{T},
\end{array}\right.
$$

where F^{-}and F^{+}are given by

$$
\left\{\begin{array}{l}
F^{-}\left(\tilde{W}_{L}, \tilde{W}_{R}\right)=F\left(\tilde{W}_{L}\right)+\lambda_{L}\left(\tilde{W}_{L}^{\star}-\tilde{W}_{L}\right) \\
F^{+}\left(\tilde{W}_{L}, \tilde{W}_{R}\right)=F\left(\tilde{W}_{R}\right)+\lambda_{R}\left(\tilde{W}_{R}^{\star}-\tilde{W}_{R}\right)
\end{array}\right.
$$

and the wave velocities are defined by

$$
\begin{aligned}
\lambda_{L} & =x_{0}-2 \Omega, \\
\lambda_{R} & =x_{0}+2 \Omega,
\end{aligned}
$$

with $x_{0}=\frac{2 U}{3}$ and $\Omega=\frac{1}{3} \sqrt{U^{2}+3 g H(1+\tilde{\beta})}$ and $\tilde{\beta}=\frac{\partial Q_{s}}{\partial Q}$.

Test cases

Numerical results

Evolution of a bump in a fluvial regime

Figure: Bump in fluvial (top) and transcritical (bottom) flow.

Numerical results

Evolution of a bump in a torrential regime

Figure: Antidune.

Numerical results

Dam break over a wet bed

Figure: Dam break over wet (top) and dry (bottom) topographies.

Discussion

Discussion

Splitting vs non-splitting methods

Figure: Bump on fluvial (left) and transcritical (right) regimes.

Discussion

Splitting vs non-splitting methods

Figure: Antidune.

Discussion

Splitting vs non-splitting methods

Figure: Dam break over wet (top) and dry (bottom) bed.

Thank you for your attention!

