Non-homogeneous incompressible Bingham flows with variable yield stress and application to volcanology.

Jordane Mathé with Laurent Chupin (maths) and Karim Kelfoun (LMV)

Laboratoire de Maths \& Laboratoire Magmas et Volcans

$$
\text { june } 2015
$$

Laboratory experiment

Zoom into the granular column \rightarrow
O. Roche, LMV.

Laboratory experiment

Zoom into the granular column \rightarrow

Fluidisation: injection of gas through
a pore plate.

O. Roche, LMV.

Figure: Non-fluidised \rightarrow short runout distance

Figure: Fluidised \rightarrow long runout distance

(1) Model

(2) Numerical simulation
(3) Perspectives
(1) Model

Two phases for one fluid

Consider one mixed fluid with variable density．

Two phases for one fluid

Consider one mixed fluid with variable density. It satisfies the non-homogeneous incompressible Navier-Stokes equations:

$$
\left\{\begin{array}{l}
\operatorname{div}(v)=0 \\
\partial_{t} \rho+\operatorname{div}(\rho v)=0 \\
\partial_{t}(\rho v)+\operatorname{div}(\rho v \otimes v)+\nabla p=\rho g+\operatorname{div}(\mathbf{S})
\end{array}\right.
$$

Two phases for one fluid

Consider one mixed fluid with variable density. It satisfies the non-homogeneous incompressible Navier-Stokes equations:

$$
\left\{\begin{array}{l}
\operatorname{div}(v)=0 \\
\partial_{t} \rho+\operatorname{div}(\rho v)=0 \\
\partial_{t}(\rho v)+\operatorname{div}(\rho v \otimes v)+\nabla p=\rho g+\operatorname{div}(\mathbf{S})
\end{array}\right.
$$

Unknown:

- v : velocity,
- p : total pressure,
- ρ : density.

Two phases for one fluid

Consider one mixed fluid with variable density. It satisfies the non-homogeneous incompressible Navier-Stokes equations:

$$
\left\{\begin{array}{l}
\operatorname{div}(v)=0 \\
\partial_{t} \rho+\operatorname{div}(\rho v)=0 \\
\partial_{t}(\rho v)+\operatorname{div}(\rho v \otimes v)+\nabla p=\rho g+\operatorname{div}(\mathbf{S})
\end{array}\right.
$$

Constant

- g: gravity.

Two phases for one fluid

Consider one mixed fluid with variable density. It satisfies the non-homogeneous incompressible Navier-Stokes equations:

$$
\left\{\begin{array}{l}
\operatorname{div}(v)=0 \\
\partial_{t} \rho+\operatorname{div}(\rho v)=0 \\
\partial_{t}(\rho v)+\operatorname{div}(\rho v \otimes v)+\nabla p=\rho g+\operatorname{div}(\mathbf{S})
\end{array}\right.
$$

Constant

- g: gravity.

Rheology
 Let precise S.

Rheology

In our case

$$
\mathbf{S}=\mu D v \quad+
$$

where $D v=\dot{\gamma}$ is the strain rate tensor, μ is the effective viscosity

Rheology

In our case

$$
\mathbf{S}=\mu D v \quad+\quad \Sigma
$$

$\left.\begin{array}{ll}\text { where } & \begin{array}{l}D v=\dot{\gamma} \text { is the strain rate tensor，} \\ \mu \text { is the effective viscosity }\end{array}\end{array} \right\rvert\, \Sigma=q \frac{D v}{|D v|}$
\Rightarrow Bingham fluid with yield stress q

Rheology

In our case

$$
\mathbf{S}=\mu D v \quad+\quad \Sigma
$$

where	$D v=\dot{\gamma}$ is the strain rate tensor,
μ is the effective viscosity	$

\Rightarrow Bingham fluid with yield stress q

Idea

Let vary the yield stress q as a function of the interstitial gas pressure.

Variation of the yield stress

Definition of the yield stress

$$
q=\left\{\begin{array}{cl}
\text { atmospheric pressure: } & \text { Coulomb friction } \\
\text { high pressure: } & \text { fluid }
\end{array}\right.
$$

Variation of the yield stress

Definition of the yield stress

where δ is the internal friction angle.

Variation of the yield stress

Definition of the yield stress

$$
\begin{aligned}
& q=\left\{\begin{array}{cl}
\text { atmospheric pressure: } & \text { Coulomb friction } \\
\text { high pressure: } & \text { fluid } \\
q=\left\{\begin{array}{cl}
\tan (\delta)(\rho g h-\text { gas pressure }) & \text { if low gas pressure } \\
0 & \text { if high gas pressure }
\end{array}\right.
\end{array}\right. \\
& q=\tan (\delta)(\rho g h-\text { gas pressure })^{+}
\end{aligned}
$$

where δ is the internal friction angle.

Equations of the model

Noting p_{f} the interstitial gas pressure, we obtain:

$$
\left\{\begin{array}{l}
\operatorname{div}(v)=0 \\
\partial_{t} \rho+\operatorname{div}(\rho v)=0 \\
\partial_{t}(\rho v)+\operatorname{div}(\rho v \otimes v)-\mu \Delta v+\nabla p=\tan (\delta) \operatorname{div}(\underbrace{\left(\rho g h-p_{f}\right)^{+}}_{\text {yield } q} \frac{D v}{|D v|})+\rho \mathbf{g}
\end{array}\right.
$$

Equations of the model

Noting p_{f} the interstitial gas pressure, we obtain:

$$
\left\{\begin{array}{l}
\operatorname{div}(v)=0 \\
\partial_{t} \rho+\operatorname{div}(\rho v)=0 \\
\partial_{t}(\rho v)+\operatorname{div}(\rho v \otimes v)-\mu \Delta v+\nabla p=\tan (\delta) \operatorname{div}(\underbrace{\left(\rho g h-p_{f}\right)^{+}}_{\text {yield } q} \frac{D v}{|D v|})+\rho \mathbf{g} \\
\partial_{t} p_{f}+v \cdot \nabla p_{f}-\kappa \Delta p_{f}=0
\end{array}\right.
$$

where κ is the diffusion coefficient.

Dambreak: Mesh

Dambreak: how to treat the density?

$$
\partial_{t} \rho+\mathbf{v} \cdot \nabla \rho=0
$$

numerical method:

RK3 TVD - WENO5 scheme.

Numerical scheme (without density)
$n=0 \quad v^{0}, \Sigma^{0}, p^{0}$ and p_{f}^{0} given.

Numerical scheme (without density)
$\begin{array}{ll}n=0 & v^{0}, \Sigma^{0}, p^{0} \text { and } p_{f}^{0} \text { given. } \\ n \geqslant 0 & v^{n}, \Sigma^{n}, p^{n} \text { and } p_{f}^{n} \text { being calculated. }\end{array}$

Numerical scheme (without density)
$\begin{array}{ll}n=0 & v^{0}, \Sigma^{0}, p^{0} \text { and } p_{f}^{0} \text { given. } \\ n \geqslant 0 & v^{n}, \Sigma^{n}, p^{n} \text { and } p_{f}{ }^{n} \text { being calculated. }\end{array}$
We compute $\left(\widetilde{v}^{n+1}, \Sigma^{n+1}\right)$ solution of

$$
\left\{\begin{array}{l}
\frac{3 \widetilde{v}^{n+1}-4 v^{n}+v^{n-1}}{2 \delta t}+2 v^{n} \cdot \nabla v^{n}-v^{n-1} \cdot \nabla v^{n-1}-\frac{\Delta \widetilde{v}^{n+1}}{\rho^{n+1}}+\frac{\nabla p^{n}}{\rho^{n+1}}=\frac{\operatorname{div} \Sigma^{n+1}}{\rho^{n+1}}-\mathbf{e}_{y} \\
\Sigma^{n+1}=\mathbb{P}_{q^{n}}\left(\Sigma^{n+1}+r \mathrm{D} \widetilde{v}^{n+1}+\varepsilon\left(\Sigma^{n}-\Sigma^{n+1}\right)\right) \\
\left.\widetilde{v}^{n+1}\right|_{\partial \Omega}=\mathbf{0}
\end{array}\right.
$$

Numerical scheme (without density)
$\begin{array}{ll}n=0 & v^{0}, \Sigma^{0}, p^{0} \text { and } p_{f}^{0} \text { given. } \\ n \geqslant 0 & v^{n}, \Sigma^{n}, p^{n} \text { and } p_{f}{ }^{n} \text { being calculated. }\end{array}$
We compute $\left(\widetilde{v}^{n+1}, \Sigma^{n+1}\right)$ solution of

$$
\left\{\begin{array}{l}
\frac{3 \widetilde{v}^{n+1}-4 v^{n}+v^{n-1}}{2 \delta t}+2 v^{n} \cdot \nabla v^{n}-v^{n-1} \cdot \nabla v^{n-1}-\frac{\Delta \widetilde{v}^{n+1}}{\rho^{n+1}}+\frac{\nabla p^{n}}{\rho^{n+1}}=\frac{\operatorname{div} \Sigma^{n+1}}{\rho^{n+1}}-\mathbf{e}_{y} \\
\Sigma^{n+1}=\mathbb{P}_{q^{n}}\left(\Sigma^{n+1}+r \mathrm{D} \widetilde{v}^{n+1}+\varepsilon\left(\Sigma^{n}-\Sigma^{n+1}\right)\right) \\
\left.\widetilde{v}^{n+1}\right|_{\partial \Omega}=\mathbf{0}
\end{array}\right.
$$

We compute $\left(v^{n+1}, p^{n+1}\right)$ thanks to the incompressibility constrain $\left\{\begin{array}{l}\frac{v^{n+1}-\widetilde{v}^{n+1}}{\delta t}+\frac{2}{3 \rho^{n+1}} \nabla\left(p^{n+1}-p^{n}\right)=\mathbf{0}, \\ \operatorname{div} v^{n+1}=0,\left.\quad v^{n+1} \cdot \mathbf{n}\right|_{\partial \Omega}=0 .\end{array}\right.$

Numerical scheme (without density)
$n=0 \quad v^{0}, \Sigma^{0}, p^{0}$ and $p_{f}{ }^{0}$ given.
$n \geqslant 0 \quad v^{n}, \Sigma^{n}, p^{n}$ and $p_{f}{ }^{n}$ being calculated.
We compute $\left(\widetilde{v}^{n+1}, \Sigma^{n+1}\right)$ solution of

$$
\left\{\begin{array}{l}
\frac{3 \widetilde{v}^{n+1}-4 v^{n}+v^{n-1}}{2 \delta t}+2 v^{n} \cdot \nabla v^{n}-v^{n-1} \cdot \nabla v^{n-1}-\frac{\Delta \widetilde{v}^{n+1}}{\rho^{n+1}}+\frac{\nabla p^{n}}{\rho^{n+1}}=\frac{\operatorname{div} \Sigma^{n+1}}{\rho^{n+1}}-\mathbf{e}_{y}, \\
\Sigma^{n+1}=\mathbb{P}_{q^{n}}\left(\Sigma^{n+1}+r D \widetilde{v}^{n+1}+\varepsilon\left(\Sigma^{n}-\Sigma^{n+1}\right)\right), \\
\left.\widetilde{v}^{n+1}\right|_{\partial \Omega}=\mathbf{0} .
\end{array}\right.
$$

We compute $\left(v^{n+1}, p^{n+1}\right)$ thanks to the incompressibility constrain $\left\{\begin{array}{l}\frac{v^{n+1}-\widetilde{v}^{n+1}}{\delta t}+\frac{2}{3 \rho^{n+1}} \nabla\left(p^{n+1}-p^{n}\right)=\mathbf{0}, \\ \operatorname{div} v^{n+1}=0,\left.\quad v^{n+1} \cdot \mathbf{n}\right|_{\partial \Omega}=0 .\end{array}\right.$

We compute $p_{f}{ }^{n+1}$ solution of

$$
\frac{3 p_{f}^{n+1}-4 p_{f}^{n}+p_{f}^{n-1}}{2 \delta t}+2 v^{n+1} \cdot \nabla p_{f}^{n}-v^{n+1} \cdot \nabla p_{f}^{n-1}-\Delta p_{f}^{n+1}=0 .
$$

Numerical scheme (without density)

$\begin{array}{ll}n=0 & v^{0}, \Sigma^{0}, p^{0} \text { and } p_{f}{ }^{0} \text { given. } \\ n \geqslant 0 & v^{n}, \Sigma^{n}, p^{n} \text { and } p_{f}^{n} \text { being calculated. }\end{array}$
We compute $\left(\widetilde{v}^{n+1}, \Sigma^{n+1}\right)$ solution of

$$
\left\{\begin{array}{l}
\frac{3 \widetilde{v}^{n+1}-4 v^{n}+v^{n-1}}{2 \delta t}+2 v^{n} \cdot \nabla v^{n}-v^{n-1} \cdot \nabla v^{n-1}-\frac{\Delta \widetilde{v}^{n+1}}{\rho^{n+1}}+\frac{\nabla p^{n}}{\rho^{n+1}}=\frac{\operatorname{div} \Sigma^{n+1}}{\rho^{n+1}}-\mathbf{e}_{y}, \\
\Sigma^{n+1}=\mathbb{P}_{q^{n}}\left(\Sigma^{n+1}+r D \widetilde{v}^{n+1}+\varepsilon\left(\Sigma^{n}-\Sigma^{n+1}\right)\right), \\
\left.\widetilde{v}^{n+1}\right|_{\partial \Omega}=\mathbf{0} .
\end{array}\right.
$$

$\hookrightarrow k=0 \quad \Sigma^{n, 0}=\Sigma^{n}$, and $\left(v^{n}, p^{n}, p_{f}^{n}\right)$ given.
$\hookrightarrow k \geqslant 0 \quad \sum^{n, k}$ known, we first compute $\widetilde{v}^{n, k}$ solution of a
Laplace-type problem then we project the stress tensor to obtain $\sum^{n, k+1}$:

$$
\left\{\begin{array}{l}
\frac{3 \widetilde{v}^{n, k}-4 v^{n}+v^{n-1}}{2 \delta t}+2 v^{n} \cdot \nabla v^{n}-v^{n-1} \cdot \nabla v^{n-1}-\frac{\Delta \widetilde{v}^{n, k}}{\rho^{n+1}}+\frac{\nabla p^{n}}{\rho^{n+1}}=\frac{\operatorname{div} \Sigma^{n, k}}{\rho^{n+1}}-\mathbf{e}_{y} \\
\left.\widetilde{v}^{n, k}\right|_{\partial \Omega}=\mathbf{0} \\
\Sigma^{n, k+1}=\mathbb{P}_{q^{n}}\left(\Sigma^{n, k}+r \mathrm{D} \widetilde{v}^{n, k}+\varepsilon\left(\Sigma^{n}-\Sigma^{n, k}\right)\right)
\end{array}\right.
$$

Numerical scheme (without density)
$\begin{array}{ll}n=0 & v^{0}, \Sigma^{0}, p^{0} \text { and } p_{f}^{0} \text { given. } \\ n \geqslant 0 & v^{n}, \Sigma^{n}, p^{n} \text { and } p_{f}{ }^{n} \text { being calculated. }\end{array}$
We compute $\left(\widetilde{v}^{n+1}, \Sigma^{n+1}\right)$ solution of

$$
\left\{\begin{array}{l}
\frac{3 \widetilde{v}^{n+1}-4 v^{n}+v^{n-1}}{2 \delta t}+2 v^{n} \cdot \nabla v^{n}-v^{n-1} \cdot \nabla v^{n-1}-\frac{\Delta \widetilde{v}^{n+1}}{\rho^{n+1}}+\frac{\nabla p^{n}}{\rho^{n+1}}=\frac{\operatorname{div} \Sigma^{n+1}}{\rho^{n+1}}-\mathbf{e}_{y} \\
\Sigma^{n+1}=\mathbb{P}_{q^{n}}\left(\Sigma^{n+1}+r \mathrm{D} \widetilde{v}^{n+1}+\varepsilon\left(\Sigma^{n}-\Sigma^{n+1}\right)\right) \\
\left.\widetilde{v}^{n+1}\right|_{\partial \Omega}=\mathbf{0}
\end{array}\right.
$$

$\hookrightarrow k=0 \quad \Sigma^{n, 0}=\Sigma^{n}$, and $\left(v^{n}, p^{n}, p_{f}^{n}\right)$ given.
$\hookrightarrow k \geqslant 0 \quad \sum^{n, k}$ known, we first compute $\widetilde{v}^{n, k}$ solution of a
Laplace-type problem then we project the stress tensor to obtain $\sum^{n, k+1}$:

$$
\left\{\begin{array}{l}
\frac{3 \widetilde{v}^{n, k}-4 v^{n}+v^{n-1}}{2 \delta t}+2 v^{n} \cdot \nabla v^{n}-v^{n-1} \cdot \nabla v^{n-1}-\frac{\Delta \widetilde{v}^{n, k}}{\rho^{n+1}}+\frac{\nabla p^{n}}{\rho^{n+1}}=\frac{\operatorname{div} \Sigma^{n, k}}{\rho^{n+1}}-\mathbf{e}_{y}, \\
\left.\widetilde{v}^{n, k}\right|_{\partial \Omega}=\mathbf{0} \\
\Sigma^{n, k+1}=\mathbb{P}_{q^{n}}\left(\Sigma^{n, k}+r \mathrm{D} \widetilde{v}^{n, k}+\varepsilon\left(\Sigma^{n}-\Sigma^{n, k}\right)\right)
\end{array}\right.
$$

Numerical scheme (without density)
$\begin{array}{ll}n=0 & v^{0}, \Sigma^{0}, p^{0} \text { and } p_{f}^{0} \text { given. } \\ n \geqslant 0 & v^{n}, \Sigma^{n}, p^{n} \text { and } p_{f}{ }^{n} \text { being calculated. }\end{array}$
We compute $\left(\widetilde{v}^{n+1}, \Sigma^{n+1}\right)$ solution of

$$
\left\{\begin{array}{l}
\frac{3 \widetilde{v}^{n+1}-4 v^{n}+v^{n-1}}{2 \delta t}+2 v^{n} \cdot \nabla v^{n}-v^{n-1} \cdot \nabla v^{n-1}-\frac{\Delta \widetilde{v}^{n+1}}{\rho^{n+1}}+\frac{\nabla p^{n}}{\rho^{n+1}}=\frac{\operatorname{div} \Sigma^{n+1}}{\rho^{n+1}}-\mathbf{e}_{y} \\
\Sigma^{n+1}=\mathbb{P}_{q^{n}}\left(\Sigma^{n+1}+r \mathrm{D} \widetilde{v}^{n+1}+\varepsilon\left(\Sigma^{n}-\Sigma^{n+1}\right)\right) \\
\left.\widetilde{v}^{n+1}\right|_{\partial \Omega}=\mathbf{0}
\end{array}\right.
$$

$\hookrightarrow k=0 \quad \Sigma^{n, 0}=\Sigma^{n}$, and $\left(v^{n}, p^{n}, p_{f}^{n}\right)$ given.
$\hookrightarrow k \geqslant 0 \quad \sum^{n, k}$ known, we first compute $\widetilde{v}^{n, k}$ solution of a
Laplace-type problem then we project the stress tensor to obtain $\sum^{n, k+1}$:

$$
\left\{\begin{array}{l}
\frac{3 \widetilde{v}^{n, k}-4 v^{n}+v^{n-1}}{2 \delta t}+2 v^{n} \cdot \nabla v^{n}-v^{n-1} \cdot \nabla v^{n-1}-\frac{\Delta \widetilde{v}^{n, k}}{\rho^{n+1}}+\frac{\nabla p^{n}}{\rho^{n+1}}=\frac{\operatorname{div} \Sigma^{n, k}}{\rho^{n+1}}-\mathbf{e}_{y} \\
\left.\widetilde{v}^{n, k}\right|_{\partial \Omega}=\mathbf{0} \\
\Sigma^{n, k+1}=\mathbb{P}_{q^{n}}\left(\Sigma^{n, k}+r \mathrm{D} \widetilde{v}^{n, k}+\varepsilon\left(\Sigma^{n}-\Sigma^{n, k}\right)\right) .
\end{array}\right.
$$

Experimental conditions

Figure: Experimental setup

Numerical simulation

We compute the collapse with different diffusion coefficient κ.

- With $\kappa=1$, it happens nothing.
- $\kappa=0.2$
- $\kappa=0.1$

Diffusion coefficient $=0.2$

Diffusion coefficient $=0.1$

Fluidized granular flows
june 2015

Perspectives

- To compare the results given by this numerical scheme for the non-fluidised case:
- Lower yield stress,...
- Lower friction coefficient... .
- To compare the results given by this numerical scheme for the fluidised case:
- Adapt the viscosity value.

Thank you!

