Saturday, January 28, 2017

All day
 
 
Before 01
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
 
Conference - CAST - Contact and Symplectic Topology
Jan 26, 2017 to Jan 28, 2017

QR-Code

Download the poster in pdf

Nantes, from January 26th to January 28th

Organization board: Baptiste Chantraine, Vincent Colin, Paolo Ghiggini

Scientific board: Jean-François Barraud, Baptiste Chantraine, Kai Cieliebak, Tobias Ekholm

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Cazassus
Jan 28, 2017

Manolescu and Woodward defined homology groups associated to a closed connected oriented 3-manifold, called symplectic instanton homology, using Lagrangian Floer homology inside a moduli space of flat SU(2)-connexions associated to a punctured Heegaard surface. Using Wehrheim and Woodward's "Floer field theory" and pseudo-holomorphic quilts, I will show that these groups only depend on the choice of a basepoint, and will define maps associated to a smooth 4-dimensional cobordism equipped with a path.

 
 
Sivek
Jan 28, 2017

In recent work, Baldwin and I defined invariants of contact 3-manifolds with boundary in sutured instanton Floer homology. I will sketch the proof of a theorem about these invariants which is analogous to a result of Plamenevskaya in Heegaard Floer homology: if a 4-manifold admits several Stein structures with distinct Chern classes, then the invariants of the induced contact structures on its boundary are linearly independent. As a corollary, we conclude that if a homology sphere Y admits a Stein filling which is not a homology ball, then its fundamental group admits a nontrivial representation to SU(2). This is joint work with John Baldwin.

 
 
Tonkonog
Jan 28, 2017

Given a Lagrangian two-torus with an attached Lagrangian disk, one can construct a different Lagrangian torus by a procedure called mutation. I will talk about the wall-crossing formula which describes how the enumerative geometry of holomorphic Maslov index 2 disks changes under mutation. I will also mention higher-dimensional mutations, and the wall-crossing formula for them. This is joint work with James Pascaleff.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Partners

Irmar LMJL ENS Rennes LMBA LAREMA

Affiliation

ANR CNRS Rennes 1 Rennes 2 Nantes INSA Rennes INRIA ENSRennes UBO UBS Angers UBL