Friday, April 5, 2019

All day
 
 
Before 01
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
 
Workshop - WCC 2019: The Eleventh International Workshop on Coding and Cryptography
Mar 31, 2019 to Apr 5, 2019

QR-Code

Download the poster in pdf

Saint-Jacut-de-la-Mer, from march 31st to april 5th 2019

Organization board: Delphine Boucher, Emmanuelle Guiot, Pierre Loidreau, Gwezheneg Robert, Adeline Roux-Langlois

Scientific board: Anne Canteaut (co-chair, Inria, France), Felix Ulmer (co-chair, Université de Rennes 1, France)

Invited speakers :

  • Alain Couvreur (Inria Saclay, France)
  • Venkatesan Guruswami (Carnegie Mellon University, USA)
  • Gohar Kyureghyan (Rostock University, Germany)

Welcome to WCC19 ! This is the eleventh in the series of biannual workshops on Coding and Cryptography. It is organized by Université de Rennes 1, CNRS, IRMAR and IRISA. For more information see the Presentation page.

 
jstar2019 : Journées de Statistique de Rennes - 15ème édition
Apr 4, 2019 to Apr 5, 2019

Depuis 2004, les statisticiens de l'Institut de recherche mathématique de Rennes (IRMAR) organisent annuellement les Journées de STAtistique de Rennes (JSTAR).

Cette année, l'INSA Rennes organise la 15ème édition sur le thème «Statistique et données de santé».

Les journées auront lieu les 4 et 5 avril 2019 à l'INSA Rennes sur le campus de Beaulieu.

Plus d'information

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Completely integrable vector fields
Apr 5, 2019

We study local holomorphic vector fields in dimension 3 with a maximum number of holomorphic first integrals. There are no such examples with a finite number of separatrices and isolated singularity as was proved in a joint work with Felipe Cano (UVA) and Marianna Ravara Vago (UFSC). As a consequence, it is natural to allow non-isolated singularities. Anyway, this is still a very hard problem and so we introduce a hypothesis that forces the dynamics of the foliation to be somehow manageable. This tameness condition has a simple formulation: there exists a holomorphic first integral that is non-constant in every of the irreducible components of the singular set. In this setting we will show that the leaf space is a germ of regular surface and the ring of holomorphic first integrals is a ring of complex power series in two variables. Given a transversal, we consider the finite group of diffeomorphisms whose orbits are contained in leaves of the foliation. Surprisingly, even if the leaf space is simple, we can construct explicit examples where the aforementioned group is non-solvable. This is a joint work with Rudy Rosas (PUCPE).

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Partners

Irmar LMJL ENS Rennes LMBA LAREMA

Affiliation

ANR CNRS Rennes 1 Rennes 2 Nantes INSA Rennes INRIA ENSRennes UBO UBS Angers UBL