
Depuis le XIXe siècle, on sait qu'il existe d'autres « géométries » que la géométrie euclidienne que l'on apprend habituellement à l'école.
Depuis le XIXe siècle, on sait qu'il existe d'autres « géométries » que la géométrie euclidienne que l'on apprend habituellement à l'école.
Dans une salle tapissée de miroirs balayée par un rayon laser, peut-il y avoir des endroits sombres ? ...
Nous évoquerons en trois dates (1921, 1953, 1965) et trois noms...
Les méthodes de discrétisation des EDP ont été développées au siècle dernier...
les suites de Goodstein forment un exemple 'simple' d'algorithme récursif arithmétique...
En 1637, Descartes appelle courbes géométriques celles que l’on peut décrire par des mouvements bien réglés...
Une des manières les plus naturelles de ranger 8 boules de pétanque et un cochonnet dans une pochette cubique ...
En 1878, Pafnouti Tchebychev présentait à l'Exposition Universelle de Paris une "machine plantigrade".
Grothendieck a introduit ses fameuses topologies car sur les variétés algébriques les ouverts de Zariski sont trop peu
Nous décrivons les opérateurs différentiels tordus sur la droite projective complexe associés à un caractère entier.
Quelles formes doit avoir un verre pour qu'un faisceau lumineux issu d'un point, qui le transverse, converge en un point
Histoire de l'apparition de la perspective dans la peinture.
Comment utiliser la théorie de tresses pour mélanger au mieux de fluides.
Que sont la cybersécurité et la sécurité numérique dans le monde d'aujourd'hui et quels en sont les enjeux ?
Ou comment dupliquer des lingots d'or.
On explique ce que signifie la fameuse question P=NP qui vaut 1 million de dollars.
Le triangle de Penrose est un objet imaginaire qu'on peut dessiner mais pas construire en 3D.
Le théorème de Mazur-Ulam établit un lien entre la structure métrique et la structure affine d'un espace vectoriel normé.
Du concept à la réalisation avec un aperçu de toutes les possibilités algorithmiques d'un simple système électro-mécan
Platon attribue à Théodore de Cyrène la preuve de l’irrationalité des racines de 3, 5, 6, 7, 8, 10, 11, 12, 13, 14 15 et 17.
Peut-on savoir à l'avance si un programme d'ordinateur va s'arrêter, ou s'il va boucler à l'infini ?
L'analogie entre entier et polynôme a donné naissance à une correspondance entre arithmétique et géométrie.
Si l’on veut construire un solide régulier de l’espace, il n’y a que 5 possibilités !
Comment reconnaître si une tresse est vraiment tressée ? Est-ce qu'un ordinateur est capable de le faire rapidement ?
Comment se comporte un « grand » objet combinatoire ? Comment paver un grand diamant aztèque par des dominos ?
Les nombres p-adiques sont des nombres qui, contrairement aux nombres usuels, possèdent une infinité de chiffres avant la virgule...