
Depuis le XIXe siècle, on sait qu'il existe d'autres « géométries » que la géométrie euclidienne que l'on apprend habituellement à l'école.
Depuis le XIXe siècle, on sait qu'il existe d'autres « géométries » que la géométrie euclidienne que l'on apprend habituellement à l'école.
Dans une salle tapissée de miroirs balayée par un rayon laser, peut-il y avoir des endroits sombres ? ...
Si on s’amuse à lancer une bille vers une autre bille immobile...
Dans la tradition musicale occidentale, nous nous sommes habitués à écouter des instruments qui sont accordés de manière fausse...
En 1637, Descartes appelle courbes géométriques celles que l’on peut décrire par des mouvements bien réglés...
Une des manières les plus naturelles de ranger 8 boules de pétanque et un cochonnet dans une pochette cubique ...
fffffffff(x)=x ? Quelles périodes apparaissent lorsque nous itérons une fonction sur l’intervalle ?
En 1878, Pafnouti Tchebychev présentait à l'Exposition Universelle de Paris une "machine plantigrade".
Quelles formes doit avoir un verre pour qu'un faisceau lumineux issu d'un point, qui le transverse, converge en un point
Histoire de l'apparition de la perspective dans la peinture.
Que disent exactement la construction des entiers de Von Neumann et les résultats sur l'hypothèse du continu ?
Le triangle de Penrose est un objet imaginaire qu'on peut dessiner mais pas construire en 3D.
Platon attribue à Théodore de Cyrène la preuve de l’irrationalité des racines de 3, 5, 6, 7, 8, 10, 11, 12, 13, 14 15 et 17.
Si l’on veut construire un solide régulier de l’espace, il n’y a que 5 possibilités !
Comment reconnaître si une tresse est vraiment tressée ? Est-ce qu'un ordinateur est capable de le faire rapidement ?
Comment se comporte un « grand » objet combinatoire ? Comment paver un grand diamant aztèque par des dominos ?
Les nombres p-adiques sont des nombres qui, contrairement aux nombres usuels, possèdent une infinité de chiffres avant la virgule...