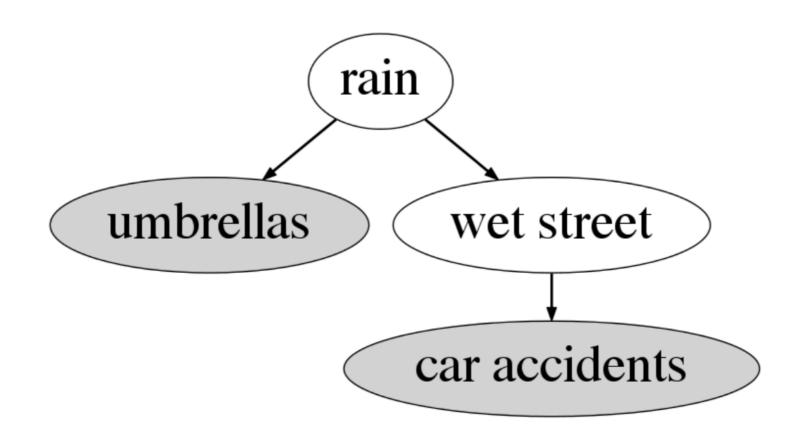
Inferring causality from a mixture of observations and interventions

IA et Santé: Approches Interdisciplinaires Nantes, 29 juin - 1er juillet, 2022 G. Nuel

Correlation is not Causation

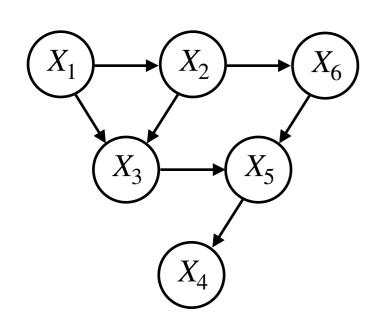


umbrellas and car accidents are correlated

But:

- provoking car accidents does not make appear umbrellas
- distributing umbrellas in the street does not provoke car accidents

Directed Acyclic Graphs



Definition (DAG):

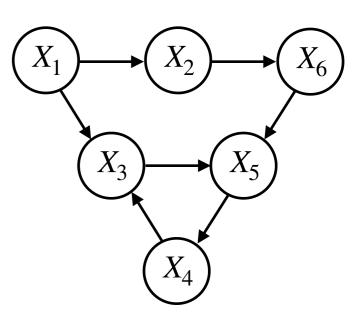
 $G = (V = \{1,...,n\}, E \subset V \times V)$ is a *Directed Acyclic Graph* if and only if it has no cycle

Remark: loops are ok (e.g. $X_1 - X_2 - X_3$)

Theorem (topological ordering):

 $G = (V = \{1, ..., n\}, E \subset V \times V)$ is a Directed Acyclic Graph if and only if it exists a topological ordering $\sigma_1, ..., \sigma_n$ such that $\forall i, j \in V$ such that $(i, j) \in E$ we have $\sigma_i < \sigma_j$

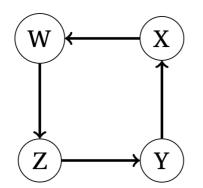
Example: $\sigma = (1,2,3,6,5,4)$ is a topological ordering

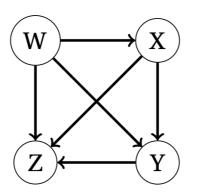


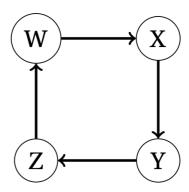
not a DAG

Directed Acyclic Graphs

Why not cyclic directed graph?

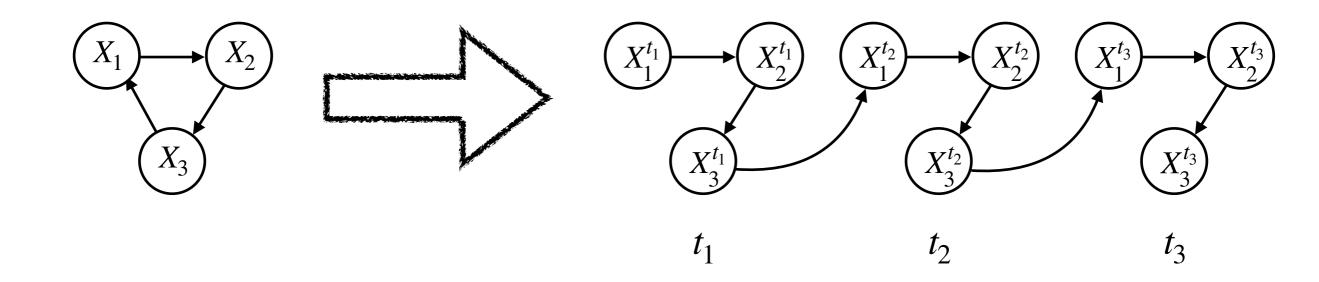




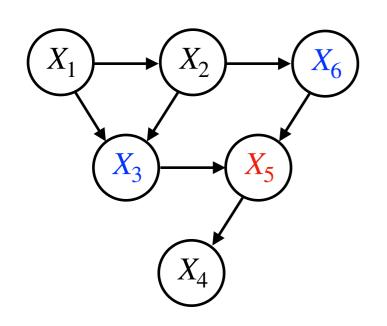


Three models with the same distribution (Monneret 2019)

What about feedback loops?



Bayesian Networks



Definition (Bayesian Network):

 (G,\mathbb{P}) is a Bayesian Network if and only if G=(V,E) is a DAG and

$$\mathbb{P}(X) = \prod_{j=1}^n \mathbb{P}(X_j | X_{\mathrm{pa}_j})$$
 with $\mathrm{pa}_j = \{i \in V, (i,j) \in E\}$

Example:

$$\mathbb{P}(X_1, ..., X_6) = \mathbb{P}(X_1) \mathbb{P}(X_2 \mid X_1) \mathbb{P}(X_3 \mid X_1, X_2) \mathbb{P}(X_6 \mid X_2) \mathbb{P}(X_5 \mid X_3, X_6) \mathbb{P}(X_4 \mid X_5)$$

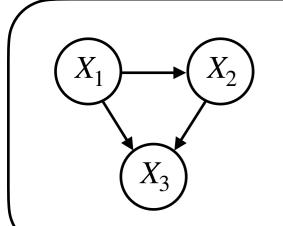
NB: the topological ordering provide a generative procedure

Example of conditional distribution:

With Gaussian Bayesian Networks $\mathbb{P}(X_i|X_{\mathrm{pa}_j}=Z)\sim \mathcal{N}(Z\beta,\sigma^2)$ but we can use any GLM: binomial $\mathcal{B}(n,\mathrm{softmax}(Z\beta))$, Poisson $\mathcal{P}(e^{Z\beta})$, etc.

Markov Equivalence Class

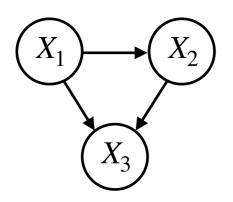
Simulation



```
set.seed(42)
x1=rnorm(1000)
x2=-0.3*x1+rnorm(1000)
x3=1.2*x1+0.5*x2+rnorm(1000)
```

```
x1 x2 x3
[1,] 1.3709584 1.9137710 2.85261368
[2,] -0.5646982 0.6935316 -0.60879604
[3,] 0.3631284 0.8617949 -0.85808419
[4,] 0.6328626 0.1871146 -1.15371251
[5,] 0.4042683 -1.1172139 -1.36529329
[6,] -0.1061245 -0.5656456 -0.04433397
```

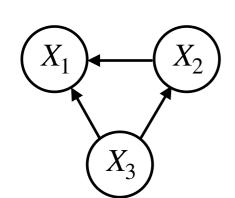
Estimations



```
> reg=list(lm(x1~1),lm(x2~x1),lm(x3~x1+x2))
```

> sum(sapply(reg,logLik))

[1] -4272.506



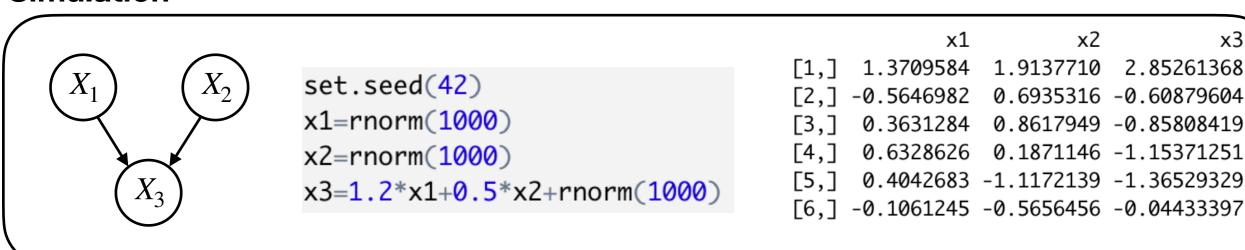
```
> reg=list(lm(x1~x2+x3),lm(x2~x3),lm(x3~1))
```

> sum(sapply(reg,logLik))

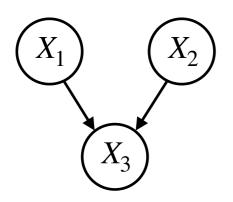
[1] -4272.506

Markov Equivalence Class

Simulation



Estimations



```
> reg=list(lm(x1~1),lm(x2~1),lm(x3~x1+x2))
```

> sum(sapply(reg,logLik))

[1] -4314.239

```
X_1
X_2
X_3
```

```
> reg=list(lm(x1~x3),lm(x2~x3),lm(x3~1))
```

> sum(sapply(reg,logLik))

[1] -4405.149

Markov Equivalence Class

Definition (skeleton):

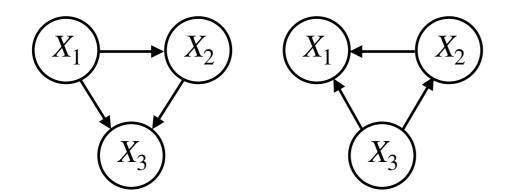
The *skeleton* of a DAG is the *undirected* graph induced by its (directed) edges

Definition (v-structure):

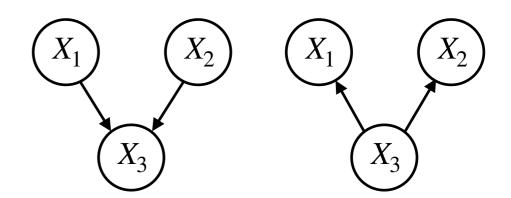
(A,B,C) is a *v-structure* of a DAG iff: $A \to B \leftarrow C$ without $A \to C$ nor $A \leftarrow C$

Theorem (2.1 in Andersson et al 1997):

Two DAGs are Markov equivalent if and only if they have the same *skeleton* and the same *v-structures* (also called *immoralities*).



Same skeleton no v-structures



Same skeleton different v-structures

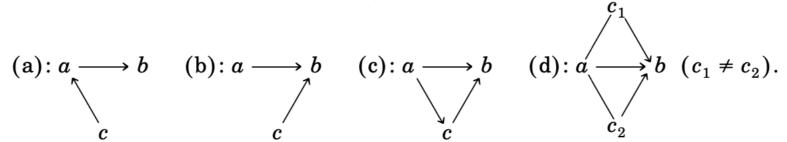
CPDAG: Completed Partially Directed Acyclic Graph

Definition (CPDAG):

The CPDAG (also called essential graph) is a PDAG representing the MEC of a DAG. Directed edge iff shared by all DAGs, undirected otherwise.

Definition (strongly protected arrows):

 $a \to b$ is strongly protected in G if $a \to b$ occurs in at least one of the following configurations in the induced subgraph



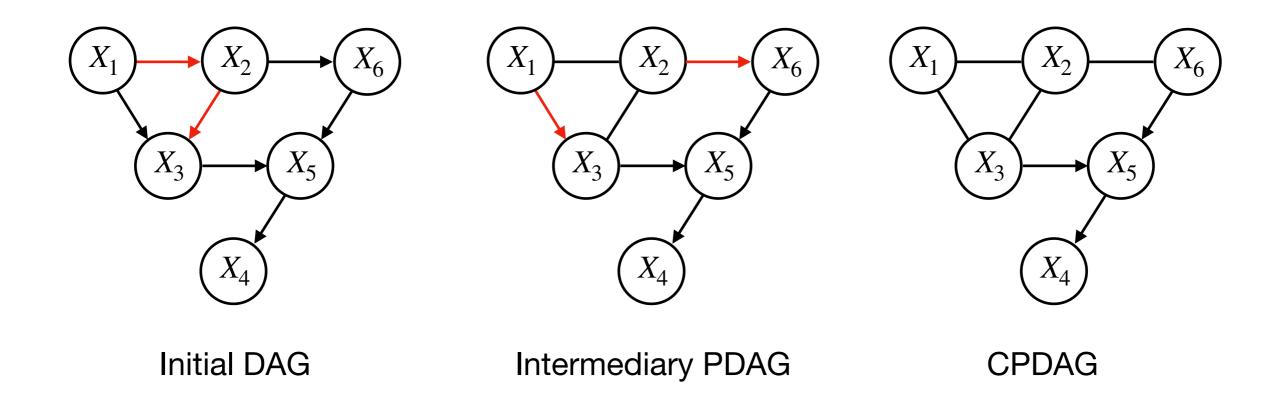
Definition 3.3 from Andersson et al (1997)

Algorithm (Algo 1, Hauser & Bühlmann, 2012): we can build a CPDAG from a DAG by dropping all arrows not strongly protected, updating the edges, and repeat until convergence

CPDAG: Completed Partially Directed Acyclic Graph



 $a \rightarrow b$ strongly protected (Andersson et al, 1997)



Posterior DAG Distribution

integrated likelihood

$$\mathbb{P}(G|\text{data}) \propto \mathbb{P}(G) \times \int_{\theta} \mathbb{P}(\text{data}|G,\theta) \times \mathbb{P}(\theta|G) \times d\theta$$
DAG prior likelihood param. prior

Rather than integrating the likelihood, we use the following approximation:

$$\log \mathbb{P}(G|\text{data}) \simeq \text{Cst.} + \log \mathbb{P}(G) + \frac{\log \text{lik}(\hat{\theta}|G)}{\log \text{lik}(\hat{\theta}|G)} - \text{pen}(G)$$

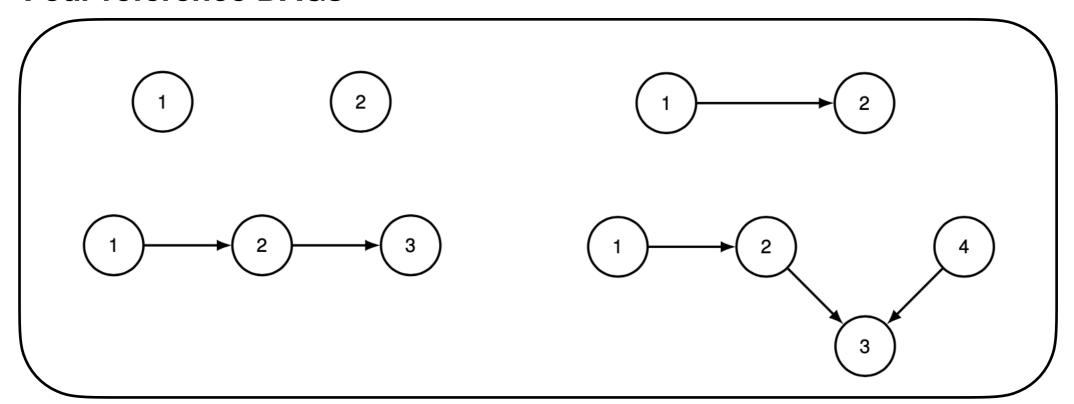
where the penalty function can be either:

• pen(G) =
$$\frac{1}{2}\sum_{j}(|pa_{j}|+2)\log n_{j}$$
 (BIC)

•
$$pen(G) = \frac{1}{2} \sum_{j} \left\{ (|pa_{j}| + 2) \log n_{j} + \log \binom{|pa_{j}|}{p-1} \right\}$$
 (eBIC)

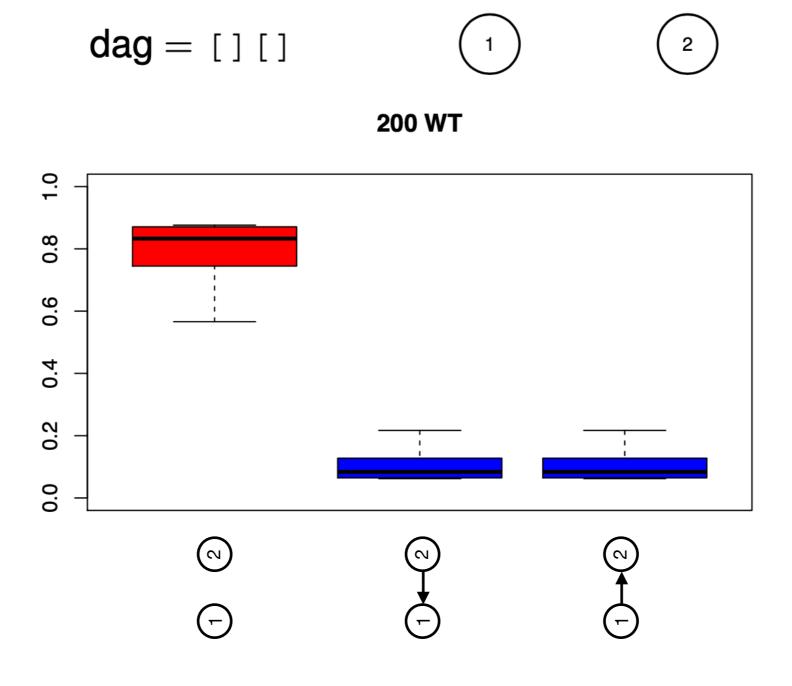
Toy-examples

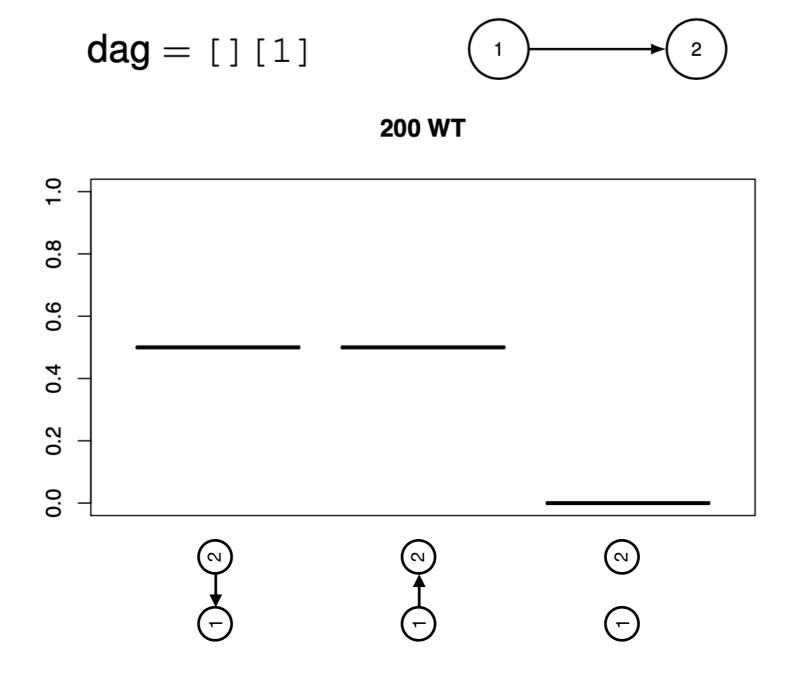
Four reference DAGs

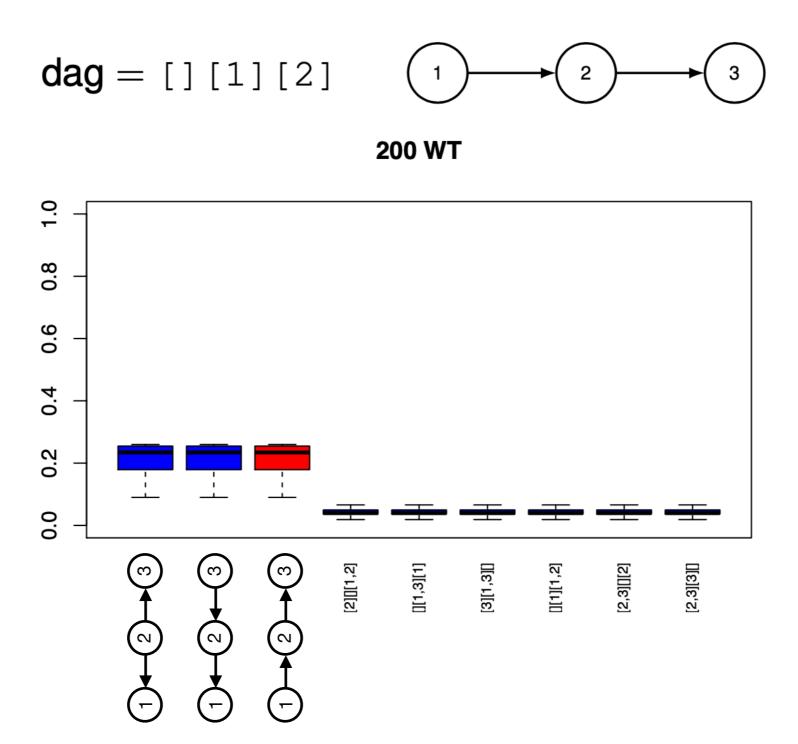


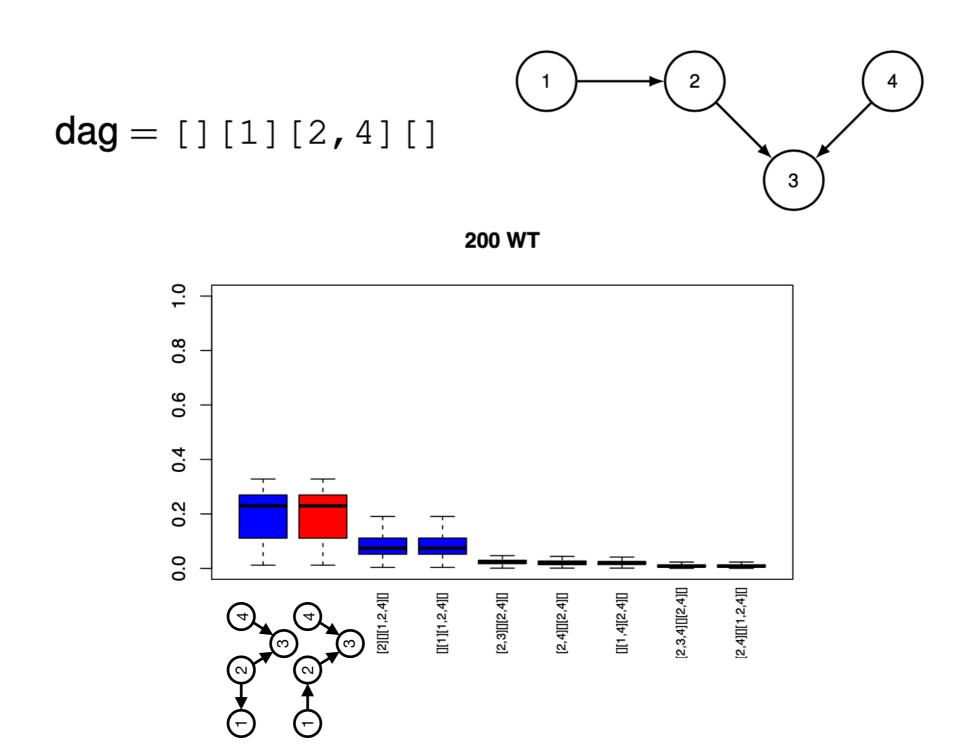
Experiments:

- Simulate 200 observations using a GBN
- Exhaustive search over the DAG space
- Posterior $\mathbb{P}(G \mid \text{data})$ over 100 replicates

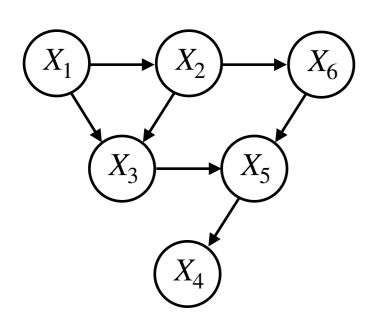


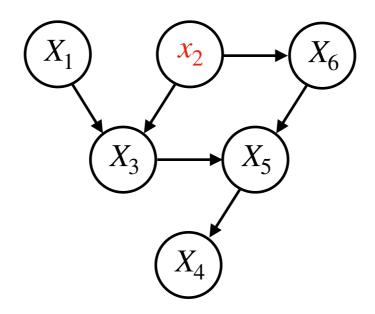


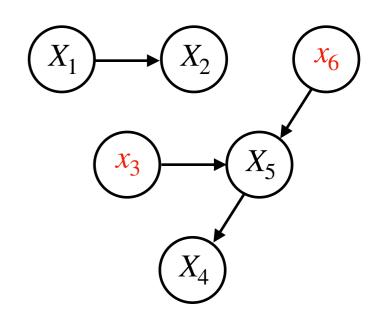




Interventions: Do operator







Observation

$$Do(X_2 = x_2)$$

$$Do(X_3 = x_3, X_6 = x_6)$$

Example of interventions:

- Clinical randomization Do(T = t)
- Gene knock-out Do(G = 0)
- Knock-down/up
- Functional knock-out

$$\mathbb{P}(X | \operatorname{Do}(Y = y)) \neq \mathbb{P}(X | Y = y)$$

Causal Gaussian BN

Causal GBN with parameter $\theta = (w, m, \sigma)$: let us denote by X_j the expression of gene $j \in \{1, ..., p\}$ then we have:

$$X_j = m_j + \sum_{i \in pa(j)} w_{i,j} X_i + \varepsilon_j \text{ with } \varepsilon_j \sim \mathcal{N}(0, \sigma_j^2)$$

with $w_{i,j} \neq 0$ if and only if $i \in pa(j)$. NB: with a proper *causal* ordering¹ such that $i \in pa(j) \Rightarrow i < j \ W = (w_{i,j})$ is upper triangular. W is hence a nilpotent matrix with $W^p = 0$.

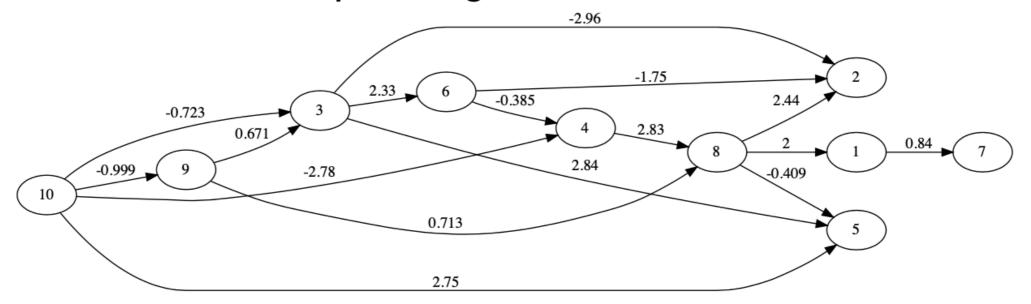
- Direct causal effects $\mathbf{W} = (\mathbf{w}_{i,j})$
- Total causal effects $L = (\ell_{i,j}) = (I W)^{-1} = I + W + ... + W^{p-1}$

$$w_{i,j} = \frac{d}{dx}\mathbb{E}[X_j|X_{-j}, do(X_i = x)]$$
 $\ell_{i,j} = \frac{d}{dx}\mathbb{E}[X_j|do(X_i = x)]$

¹also called *topological ordering* in a DAG.

Example

A random DAG with p = 10 genes



j	1	2	3	4	5	6	7	8	9	10
							-1.31			
σ	1.90	1.10	0.77	1.30	0.81	0.72	0.98	1.20	0.91	0.41

Some values (a causal ordering 10, 9, 3, 6, 4, 8, 2, 5, 1, 7):

$$pa(1) = \{8\}$$
 $pa(4) = \{6, 10\}$ $pa(10) = \emptyset$

$$w_{6,2} = -1.75$$
 $\ell_{6,2} = w_{6,2} + w_{6,4} \times w_{4,8} \times w_{8,2} = -4.41$

MLE with known DAG

For each experiment k, we denote by \mathcal{J}_k the intervention set (\emptyset for no intervention). Each experiment k is only informative for the genes that are *not* in the intervention set \mathcal{J}_k .

$$\operatorname{loglik}(\theta) = \sum_{j=1}^{p} \sum_{k,j \notin \mathcal{J}_k} \operatorname{log dnorm} \left(x_{kj}, \mu_j + \sum_{i \in \operatorname{pa}_j} w_{ij} x_{ki}, \sigma_j \right)$$

$$\operatorname{loglik}_j(\theta)$$

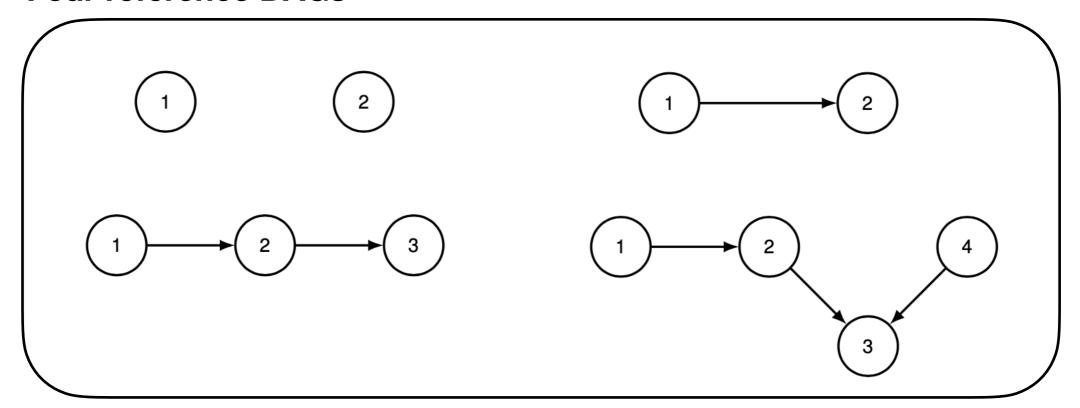
we can therefore estimate μ_j , $w_{.j} = (w_{ij})_{j \in pa_j}$ and σ_j with classical regression estimators.

For example if $pa_3 = \{1, 2\}$ we simply do:

- fit = $lm(x_3 \sim 1 + x_1 + x_2, data[\{k, j \notin \mathcal{J}_k\},])$
- $(\hat{\mu}_3, \hat{w}_{13}, \hat{w}_{23}) = \text{coef(fit)}$ and $\hat{\sigma}_3 = \text{sigma(fit)}$

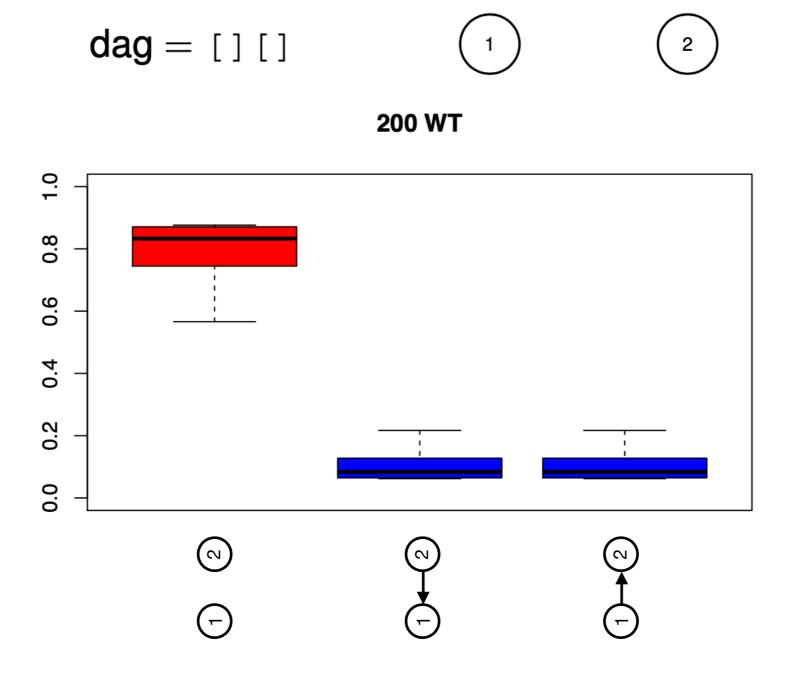
Back to the Toy-examples

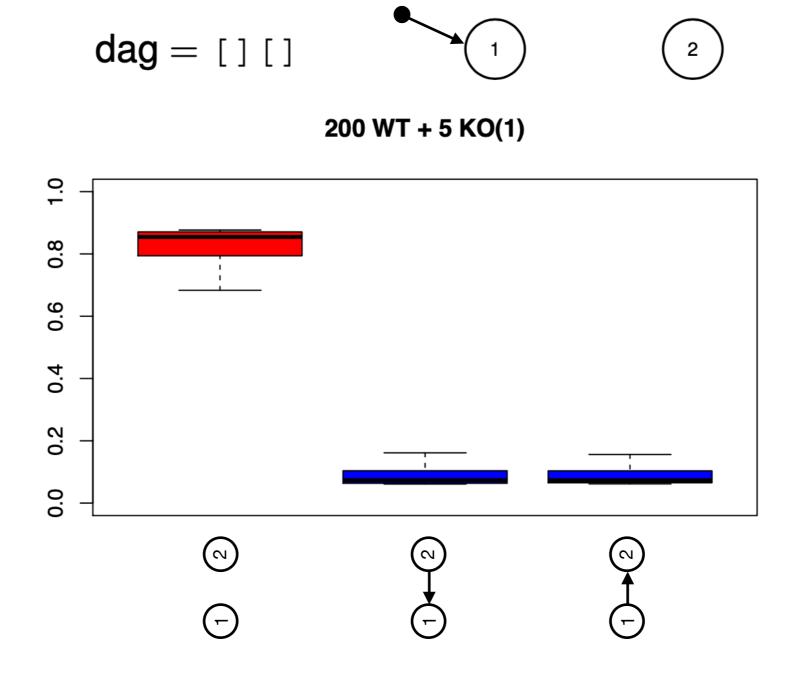
Four reference DAGs

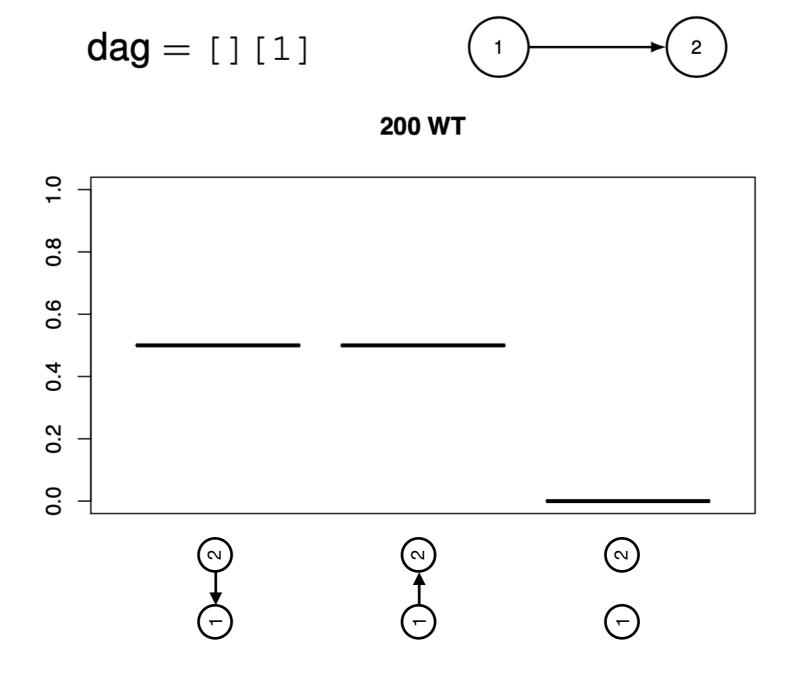


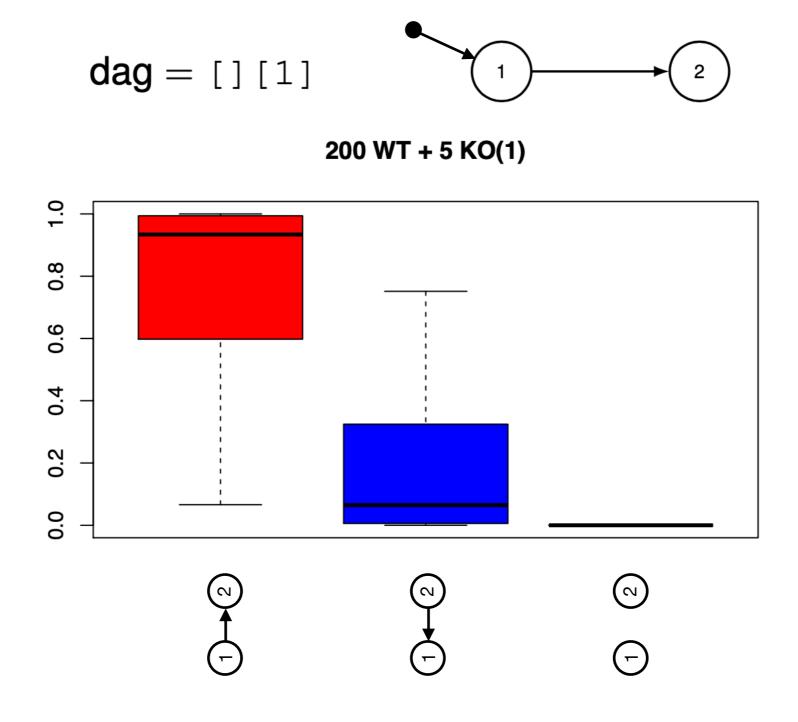
Experiments:

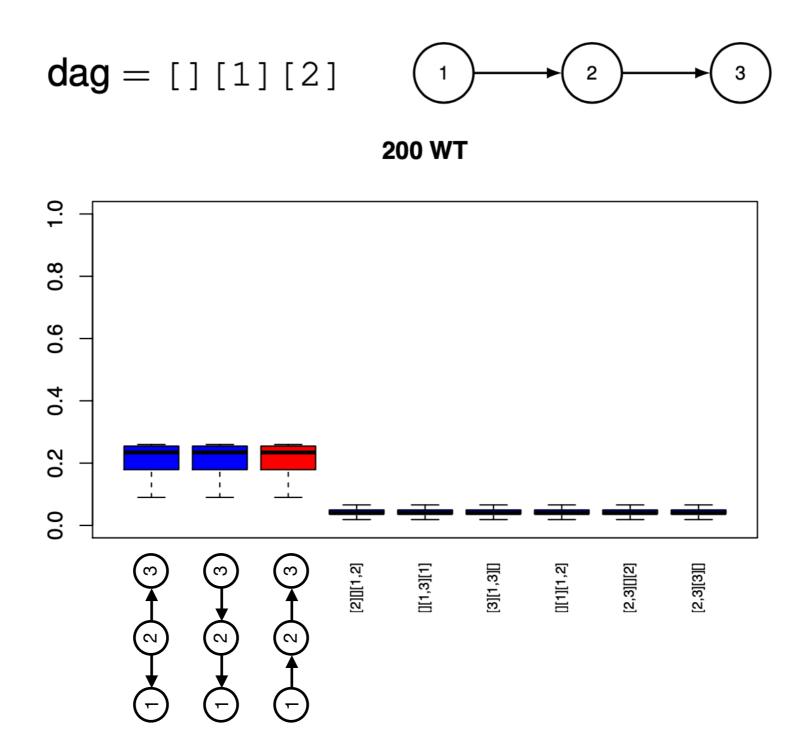
- Simulate 200 observations using a GBN
- Plus interventions!
- Exhaustive search over the DAG space
- Posterior $\mathbb{P}(G \mid \text{data})$ over 100 replicates

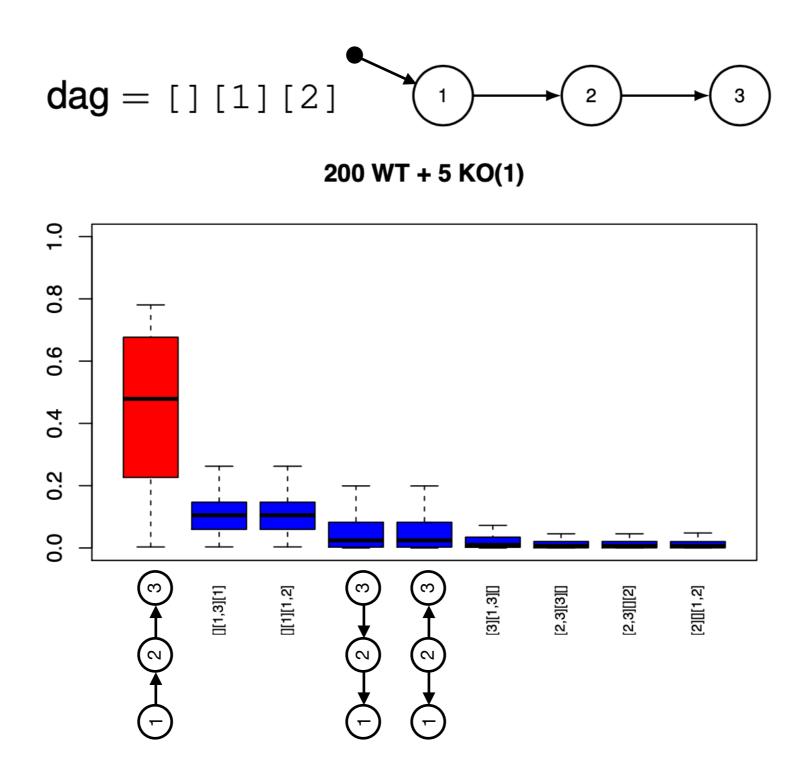


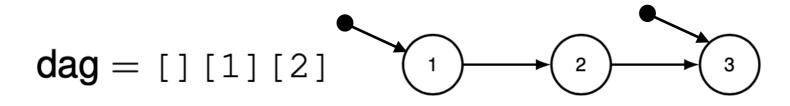




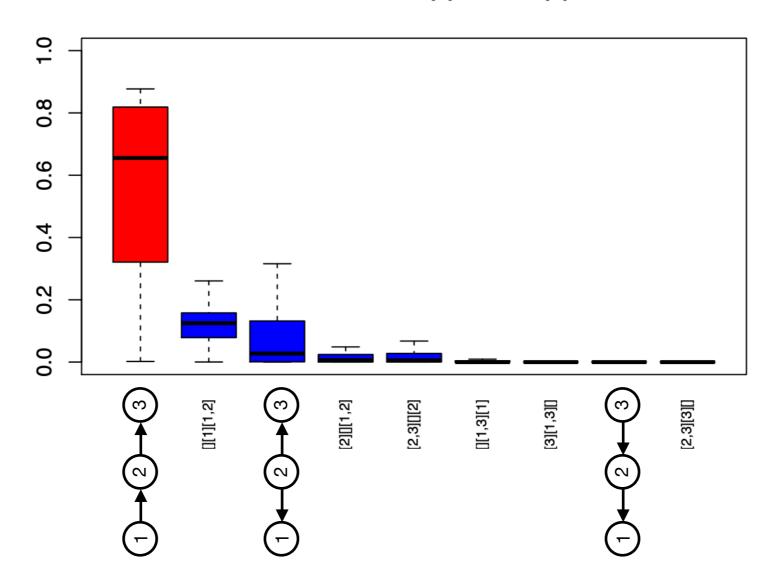


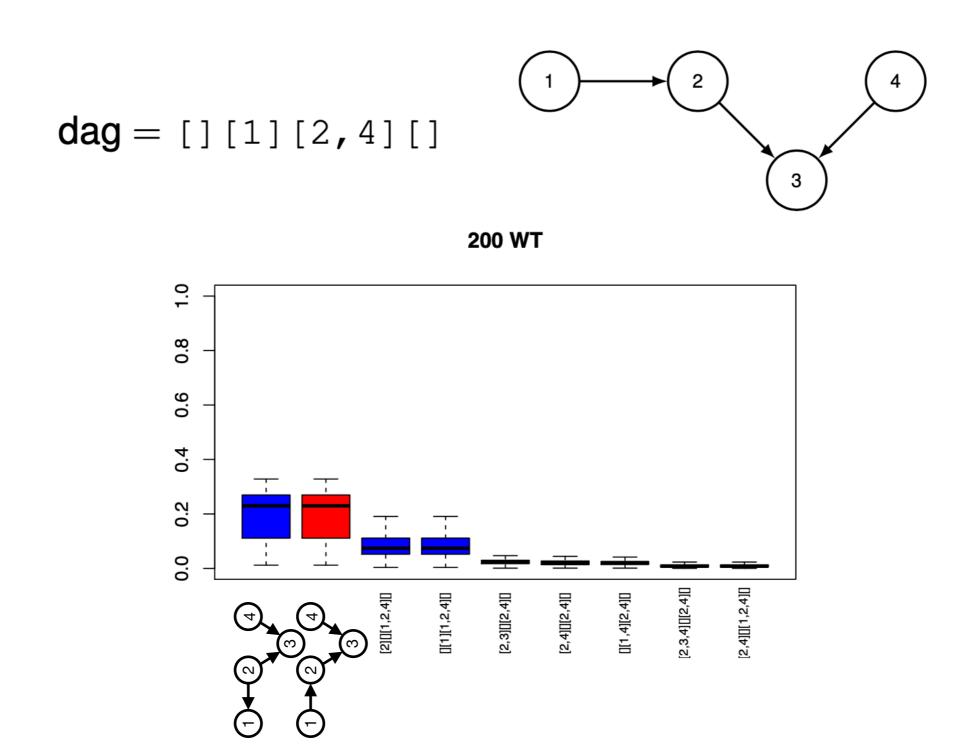


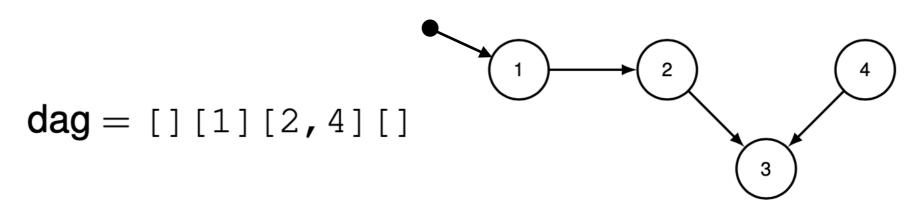




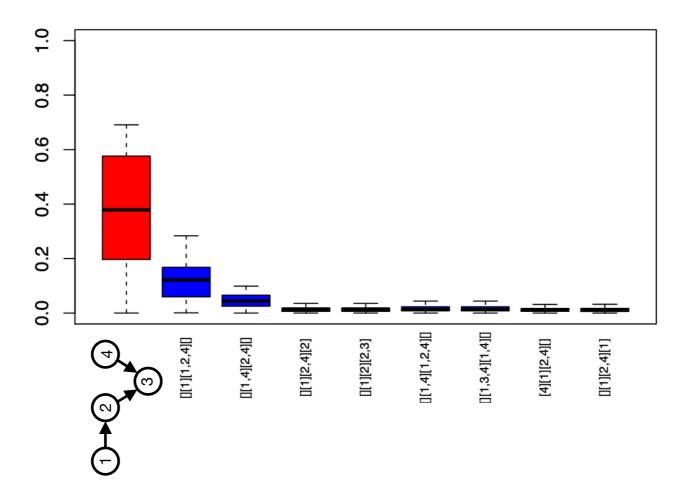
200 WT + 5 KO(1) + 5 KO(3)

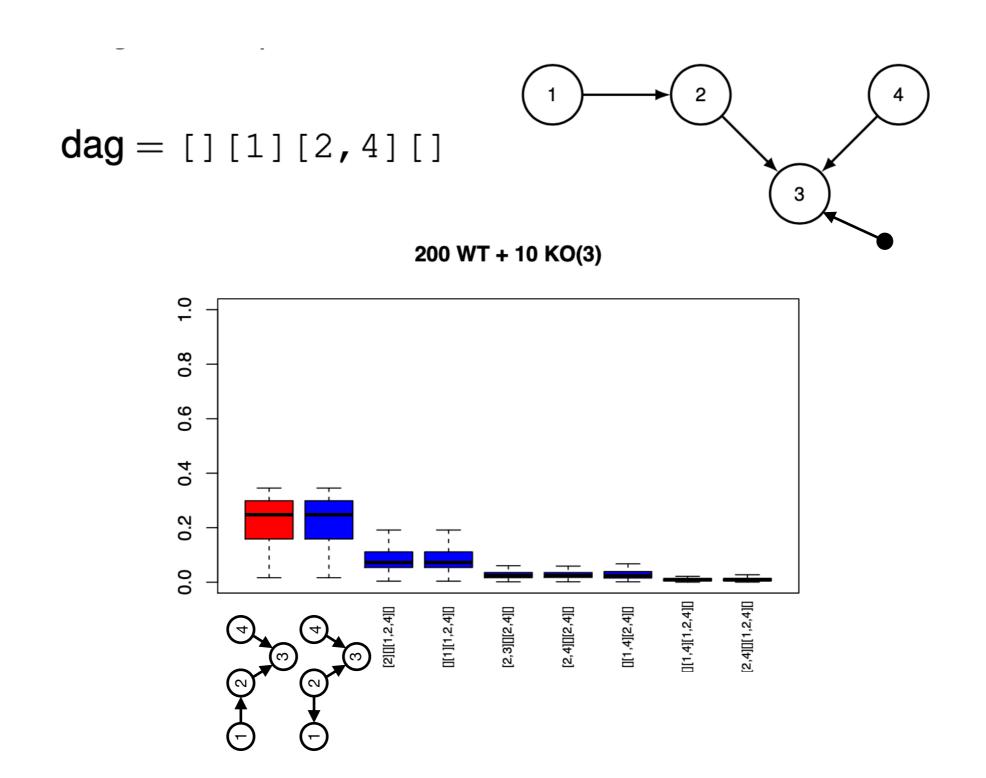






200 WT + 10 KO(1)



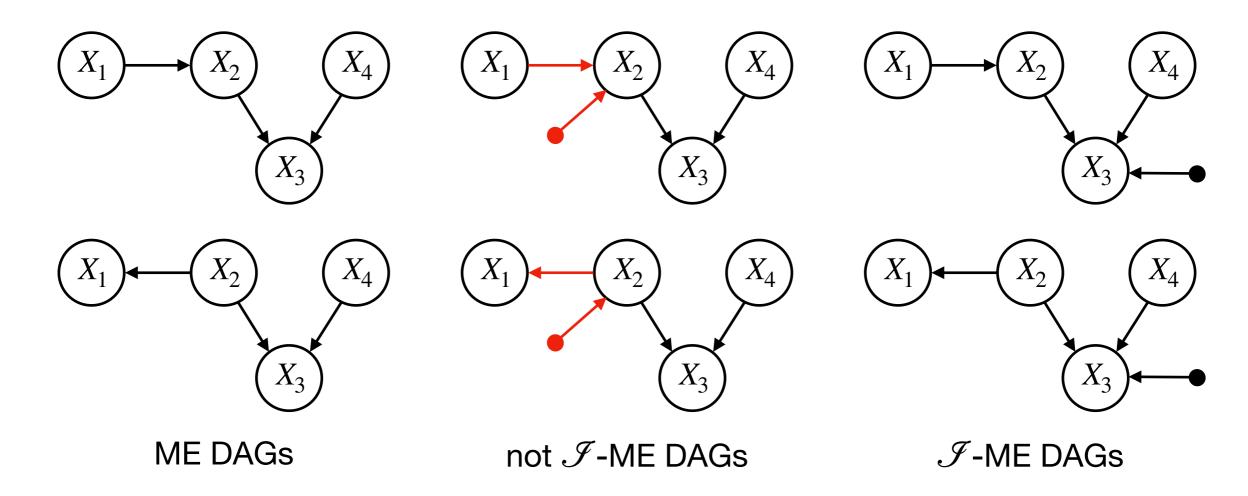


J-Markov Equivalence Class

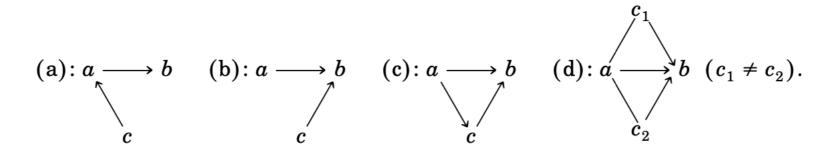
Theorem (3.9 in Yang et al 2018):

Two DAGs are \mathscr{I} -Markov equivalent with $\varnothing \in \mathscr{I}$ if and only if they have the same *skeleton* and the same *v-structures*.

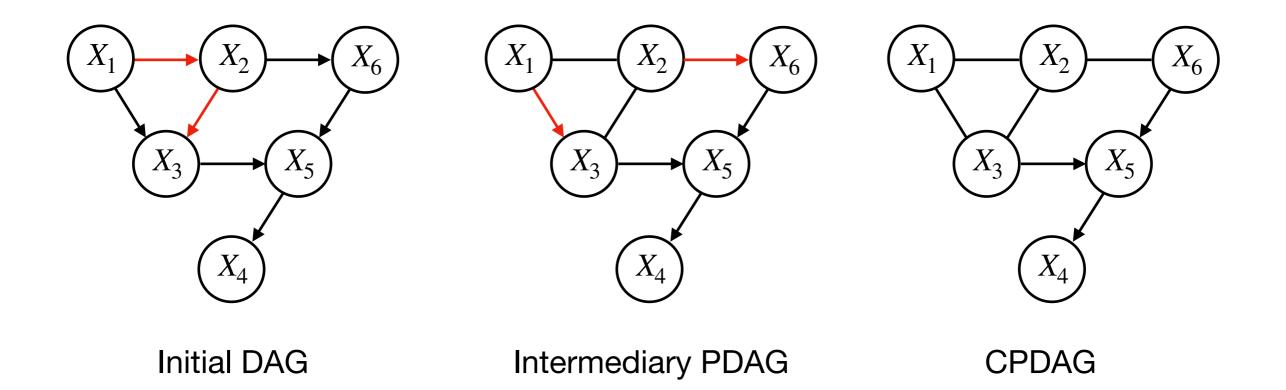
NB: strongly protected arrows (not from intervention node) of a \mathscr{I} -DAG with $\varnothing \in \mathscr{I}$ Are *exactly* the strongly \mathscr{I} -protected arrows of the DAG (Hauser & Bühlmann, 2012)



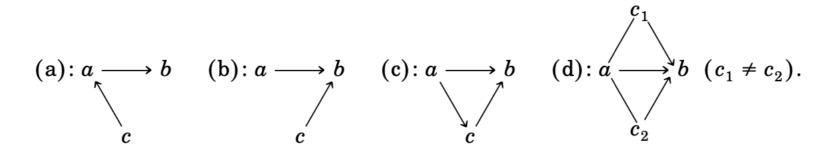
J-CPDAG: J-Completed Partially Directed Acyclic Graph



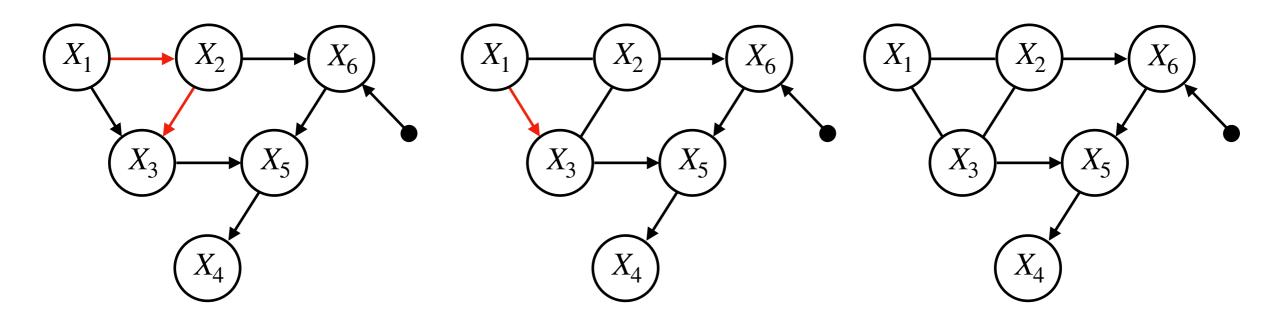
 $a \rightarrow b$ strongly protected (Andersson et al, 1997)



J-CPDAG: J-Completed Partially Directed Acyclic Graph



 $a \rightarrow b$ strongly protected (Andersson et al, 1997)

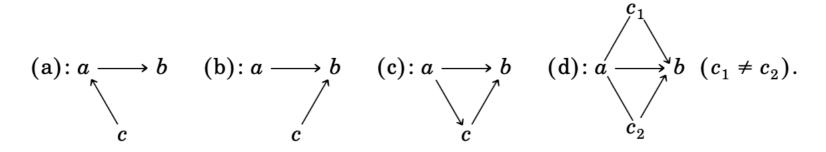


Initial \mathcal{I} -DAG

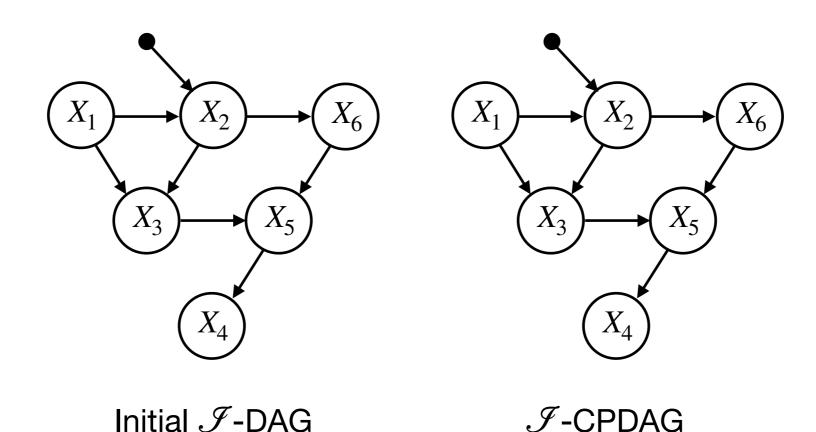
Intermediary $\mathscr{I}\text{-PDAG}$

 \mathcal{I} -CPDAG

\mathscr{I} -CPDAG: \mathscr{I} -Completed Partially Directed Acyclic Graph

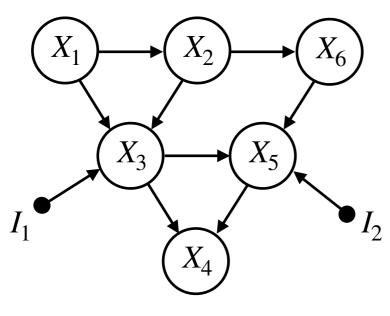


 $a \rightarrow b$ strongly protected (Andersson et al, 1997)

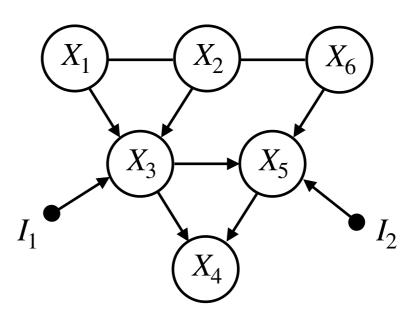


 \mathcal{I} -CPDAG

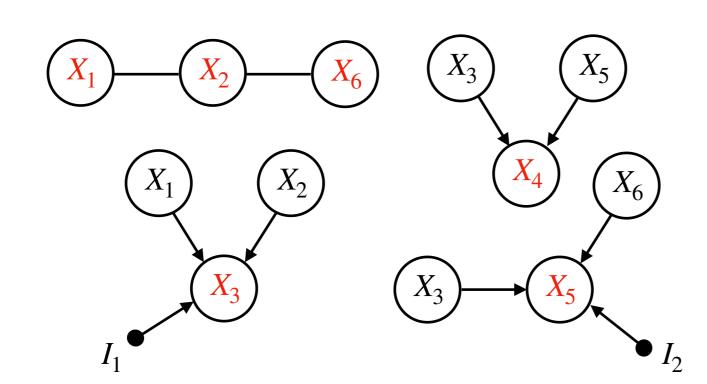
Likelihood of a F-CPDAG



Initial \mathcal{I} -DAG



 \mathcal{I} -CPDAG



$$\mathbb{P}(X_1, X_2, X_6)$$

$$\mathbb{P}(X_3 \mid X_1, X_2, I_1)$$

$$\mathbb{P}(X_4 \mid X_3, X_5)$$

$$\mathbb{P}(X_5 \mid X_3, X_6, I_2)$$

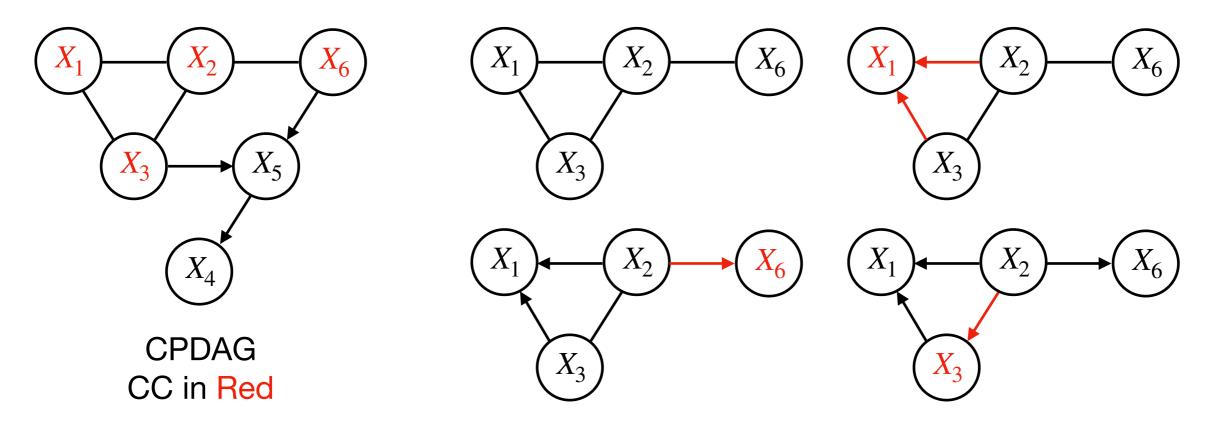
Chain components

Likelihood of a chain component

Theoretical results:

- If one intervention contains one element of the chain component it must contain all of them (Theorem 18, Hauser & Bühlmann, 2012)
- A chain component is necessary chordal, elimination order provide DAG representative (Appendix A.1, Hauser & Bühlmann, 2012)

Example: with (perfect) elimination order X_1, X_6, X_3, X_2

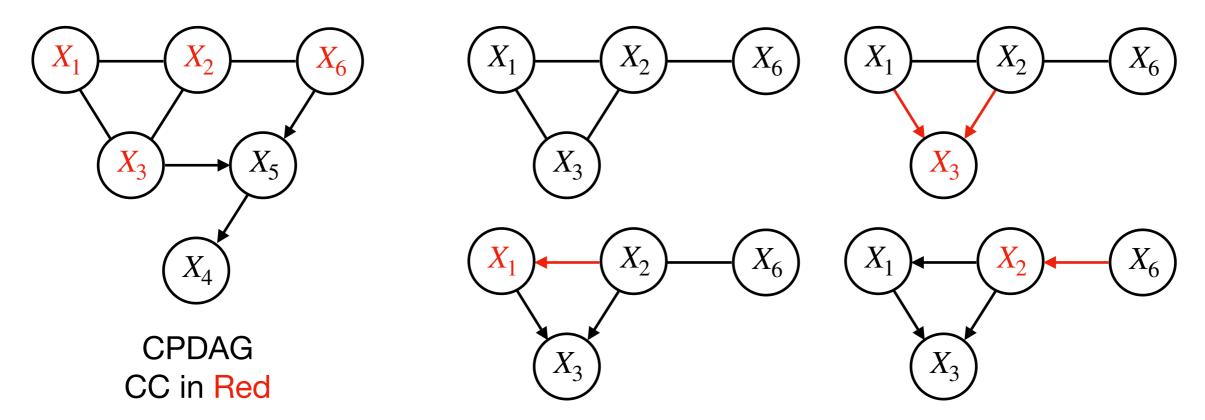


Likelihood of a chain component

Theoretical results:

- If one intervention contains one element of the chain component it must contain all of them (Theorem 18, Hauser & Bühlmann, 2012)
- A chain component is necessary chordal, elimination order provide DAG representative (Appendix A.1, Hauser & Bühlmann, 2012)

Example: with (perfect) elimination order X_3, X_1, X_2, X_6



Real life implementation

The problem: compute for all G

$$\mathbb{P}(G|\mathsf{data}) \propto \exp\left(\log \mathbb{P}(G) + \log \mathsf{lik}(\hat{\theta}|G) - \mathsf{pen}(G)\right)$$

A simple solution: by enumerating all DAGs.

р	number of DAGs
1	1
2	3
3	25
4	543
5	29, 281
6	3,781,503
7	1, 138, 779, 265
8	783,702,329,343

A better idea: through MCMC.

MCMC framework

The problem: sample DAG *G* from

$$\mathbb{P}(G|\mathsf{data}) \propto \exp\left(\log \mathbb{P}(G) + \operatorname{loglik}(\hat{\theta}|G) - \operatorname{pen}(G)\right)$$

Metropolis-Hastings: perform iteratively

- propose $G' \sim q(\cdot|G)$
- accept G' with rate min(1, α) with

$$\alpha = \frac{\mathbb{P}(G'|\text{data})}{\mathbb{P}(G|\text{data})} \times \frac{q(G|G')}{q(G'|G)}$$

MC output: a collection of *N* DAGs (default: N = 5000):

$$\underbrace{DAG_1, DAG_2, \dots, DAG_B}_{\text{burn-in (default: } B = 1000)}, \underbrace{DAG_{B+1}, DAG_{B+2} \dots, DAG_{\mathbb{N}}}_{\text{exploitable DAGs}}$$

empirical posterior:

$$\mathbb{P}(G = g | \text{data}) = \frac{1}{N - B} \sum_{i=B+1}^{N} \mathbb{1}_{\text{DAG}_i = g}$$

Proposals & Implementation

DAG space: MC3 (Madigan & Raftery, 1995)

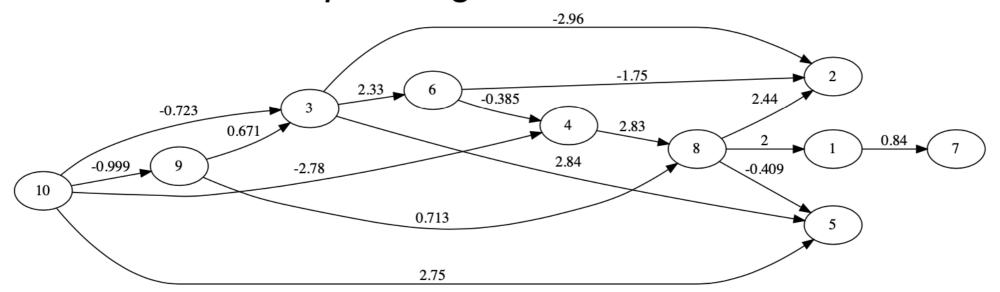
- Add/remove/flip arrow uniformly
- DAG constraint need smart update of route tables
- Available in structmcmc R package (Goudie, 2016)
- More constraints: max number of parents, fixed arrows

CPDAG space: He et al (2013), Castelleti et al (2018)

- Six moves: InsertU, DeleteU, InsertD, DeleteD, MakeV, RemoveV
- Plus one: ReverseD (Chickering 2002)
- Multiple theoretical conditions, asymmetric proposal
- https://github.com/FedeCastelletti/obayes_learn_essential_graphs

10 genes example

A random DAG with p = 10 genes



j	1	2	3	4	5	6	7	8	9	10
m	-0.61	-0.41	1.14	-1.84	1.00	0.71	-1.31	-0.96	0.06	0.70
σ	1.90	1.10	0.77	1.30	0.81	0.72	0.98	1.20	0.91	0.41

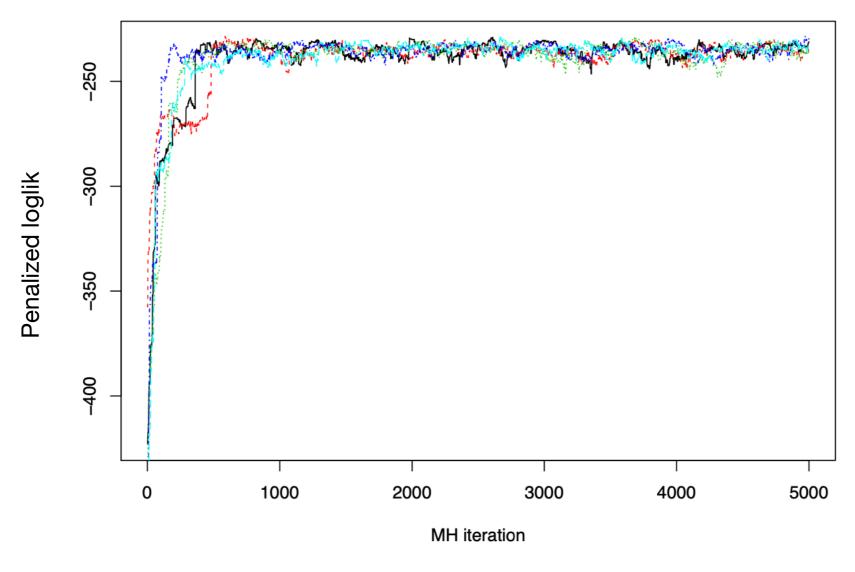
Some values (a causal ordering 10, 9, 3, 6, 4, 8, 2, 5, 1, 7):

$$pa(1) = \{8\}$$
 $pa(4) = \{6, 10\}$ $pa(10) = \emptyset$

$$w_{6,2} = -1.75$$
 $\ell_{6,2} = w_{6,2} + w_{6,4} \times w_{4,8} \times w_{8,2} = -4.41$

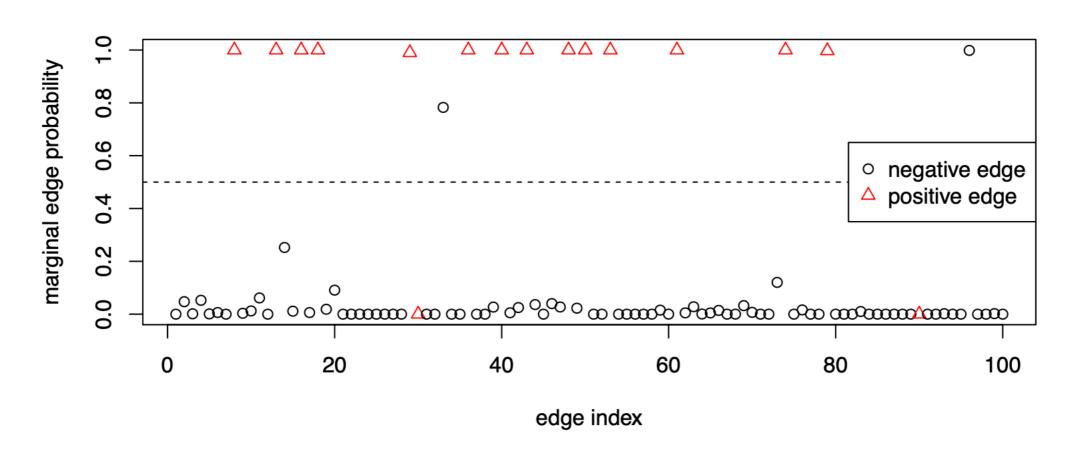
MCMC convergence

Design: fixed DAG and data (50 WT + 50 KO), 5000 MCMC iterations, unconstrained search, acceptance rate $\simeq 40\,\%$



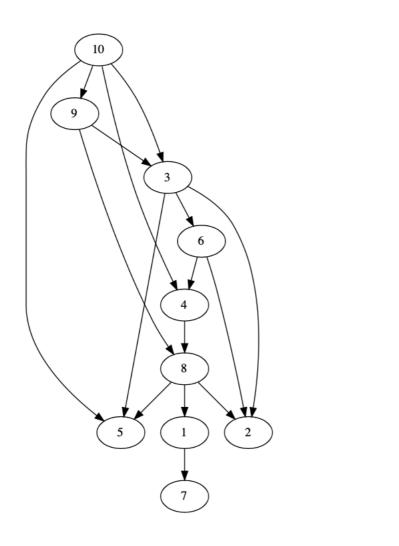
5 replications

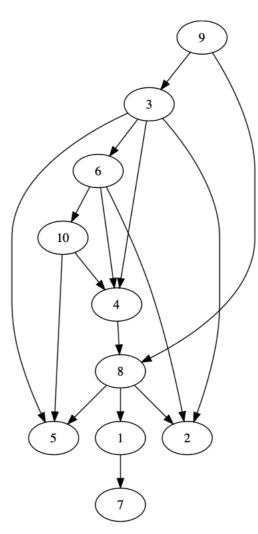
Marginal edge probability



marginal posterior distribution on edges threshold at 0.5 – AUROC=0.91 [0.78-1.00]

Consensus DAG





reference

consensus MC3

Direct effects

i	j	$W_{i,j}^*$	mean	sd
3	2	-2.96	-2.59	0.03
10	4	-2.78	-2.39	0.04
6	2	-1.75	-1.84	0.03
10	9	-1.00	0.00	0.00
10	3	-0.72	0.00	0.00
8	5	-0.41	-0.41	0.01
6	4	-0.39	-0.75	0.13
4	2	0.00	0.06	0.10
3	4	0.00	0.63	0.33
6	10	0.00	-0.06	0.00

i	j	$W_{i,j}^*$	mean	sd
9	3	0.67	0.82	0.08
9	8	0.71	0.62	0.07
1	7	0.84	0.84	0.00
8	1	2.00	2.03	0.02
3	6	2.33	2.32	0.01
8	2	2.44	2.42	0.03
10	5	2.75	2.93	0.02
4	8	2.83	2.67	0.01
3	5	2.84	2.82	0.03

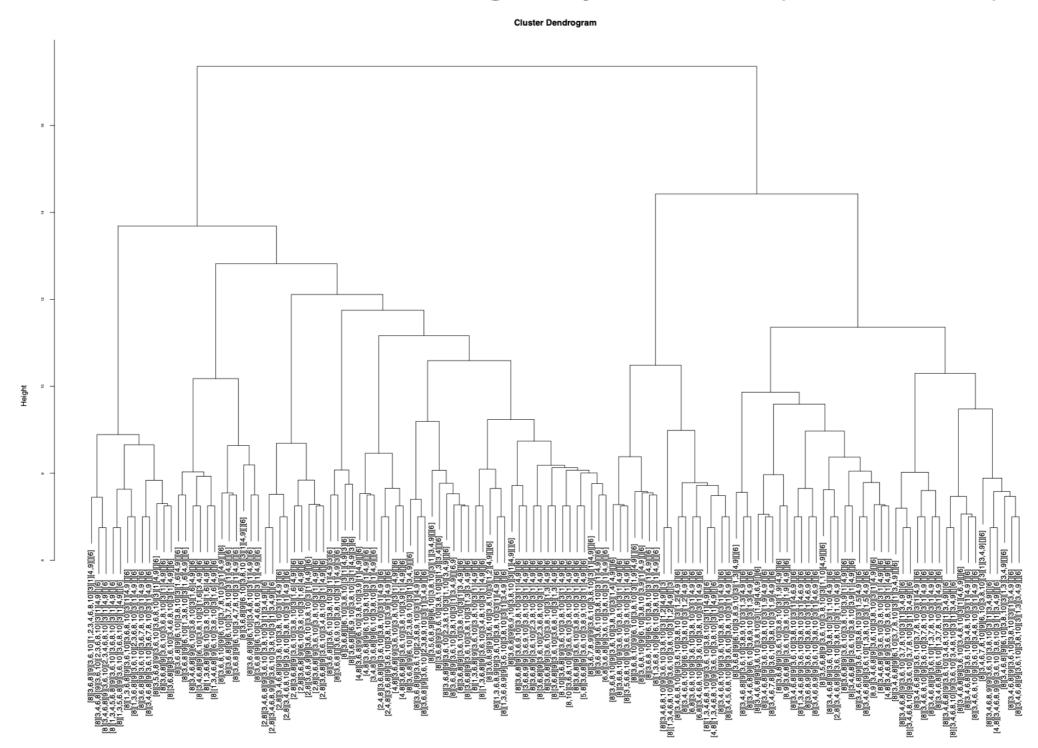
In/out degrees

i	$\operatorname{in}_{i}^{g^{*}}$	mean	sd
1	1	1.12	0.36
2	3	3.44	0.67
3	2	0.99	0.10
4	2	2.81	0.43
5	3	3.16	0.42
6	1	1.02	0.12
7	1	1.09	0.29
8	2	2.13	0.34
9	1	0.01	0.10
10	0	1.00	0.05

i	$\operatorname{out}_{i}^{g^{*}}$	mean	sd
1	1	1.07	0.25
2	0	0.08	0.27
3	3	3.94	0.61
4	1	1.34	0.52
5	0	0.02	0.13
6	2	3.07	0.27
7	0	0.03	0.18
8	3	3.00	0.00
9	2	2.11	0.35
10	4	2.11	0.32

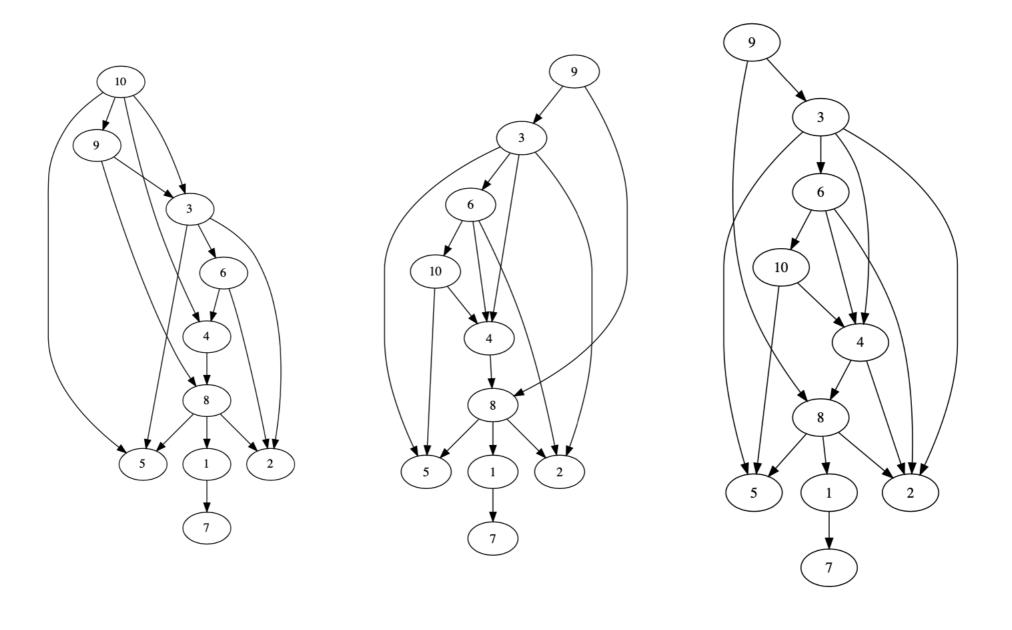
DAG clustering

Literature: Kendall tau and greedy centroids (Malmi, 2015).



Centroid DAG

Literature: Kendall tau and greedy centroids (Malmi, 2015).

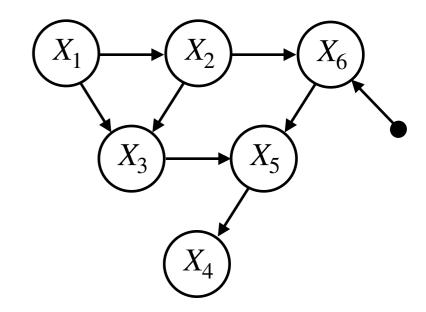


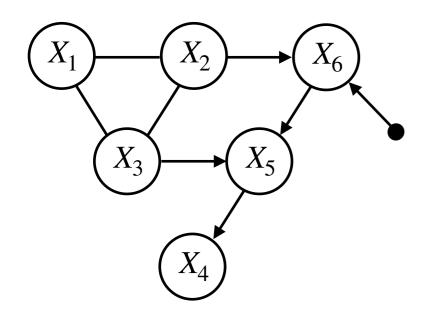
reference consensus centroid

Conclusions & Perspectives

Take-home messages:

- Correlation is not causation
- CPDAGs = Markov equivalence class of DAGs
- Extension with interventions \mathscr{F} -CPDAGs
- Relatively « simple » with intervention nodes
- MCMC over DAG or CPDAG spaces





What Next?

- MCMC over CPDAG not trivial
- What to do with a collection of DAGs or CPDAGs?
- Clinical trials: mixing observations and interventions?
- Gene regulation networks: best interventions?

Few references

- Andersson, S. A., Madigan, D., & Perlman, M. D. (1997). A characterization of Markov equivalence classes for acyclic digraphs. *The Annals of Statistics*, 25(2), 505-541.
- Castelletti, F., Consonni, G., Della Vedova, M. L., & Peluso, S. (2018).
 Learning Markov equivalence classes of directed acyclic graphs: an objective Bayes approach. *Bayesian Analysis*, 13(4), 1235-1260.
- Hauser, A., & Bühlmann, P. (2012). Characterization and greedy learning of interventional Markov equivalence classes of directed acyclic graphs. The Journal of Machine Learning Research, 13(1), 2409-2464.
- He, Y., Jia, J., & Yu, B. (2013). Reversible MCMC on Markov equivalence classes of sparse directed acyclic graphs. *The Annals of Statistics*, 41(4), 1742-1779.
- Yang, K., Katcoff, A., & Uhler, C. (2018, July). Characterizing and learning equivalence classes of causal DAGs under interventions. In *International Conference on Machine Learning* (pp. 5541-5550). PMLR.