

Assessing Multiple Imputation of Missing Values for Robust Analysis of Telehealth Kiosk Data

Hava Chaptoukaev, Maxime Beurey, Juliette Raffort, Maria A. Zuluaga

IA et santé : approches interdisciplinaires June, 29th 2022

Introduction

- **Telehealth** allows the distribution of health-related services.
- Promising avenue for **prevention**, and **remote diagnosis** and **monitoring** of diseases.
- Can be a solution when **access** to care is **restricted**.

Bodyo AiPod

- Stand-alone telehealth kiosk.
- Measures 27 health indicators in 6 minutes.
- 4 sensors collect information :
 - a scale
 - a **body composition** sensor
 - an **oximeter**
 - a **blood pressure** sensor

Deploying the AiPod

- In non-clinical contexts sensors may fail, leading to incomplete data.
- If one sensor fails all measures collected by the sensor go missing.
- We cannot afford to **discard** incomplete observations.

Problem: How to deal with missing data?

Working with missing data

- We investigate two ways to deal with missing data:
 - Imputation schemes to fill the missing values.
 - A set approach that avoids imputation.

Imputation of missing values

Imputation schemes

- We still want to **keep observations** with missing values.
- Imputation schemes allow to **fill** missing values.
- Imputation needs to preserve the integrity of the original data.

Multiple Imputation with Denoising Autoencoders (MIDA)

- The MIDA architecture[1] **imputes** missing values.
- Based on a **denoising** autoencoder.
- MIDA masker **not suitable** for our problem.

Our Approach:

Modify the masker to imitate the pattern of a failing sensor.

[1] Gondara, L., & Wang, K. (2018, June). Mida: Multiple imputation using denoising autoencoders. In Pacific-Asia conference on knowledge discovery and data mining (pp. 260-272). Springer, Cham.

Evaluation : feature reconstruction error

Average Mida MAE = 15.893

Mean MAE = 40.249

Evaluation : feature distribution

EURECOM Sophia Antipolis

Evaluation : blood pressure classification

- Dataset: 329 samples with 24 features.
- Data from at least one of the sensors is missing for **48** samples.
- Use case: assess if imputation improves the binary classification of BP categories according to 2 categories.

		Accuracy	F1-score	Precision	Sensitivity	
	None	0.67	0.65	0.62	0.69	_
	Mean	0.64	0.67	0.59	0.77	
URECOM	Our method	0.71	0.71	0.65	0.77	Bodvo

Limitations of imputation

- There may be additional information, not collected by the sensors.
- In our dataset, only 105 samples (out of 329) have no missing values.
- Imputation of poorly represented information can introduce **significant biases** in the learning process.

Set approach to learn with missing values

Set models

- Most classical machine learning models require **fixed-dimensional** inputs.
- Sets allow to overcome this limitation.
- Good alternative to learn with missing values.

Set models

- Idea: use permutation invariant neural networks.
- Permutation invariant function: indifferent to the ordering of its input.

Theorem 1. A function f operating on a set X having elements in a countable universe, is a valid set function iff there are functions $\varphi : R \to Z$ and $\rho : Z \to R$ such that

$$f(X) = \rho\Big(\sum_{x \in X} \varphi(x)\Big) \tag{1}$$

Deep Sets architecture

[2] Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R. R., & Smola, A. J. (2017). Deep sets. Advances in neural information processing systems, 30.

Lodvo[®]

Our approach

- Each input vector X_i is **encoded as a set** of permutation invariant observations x_j .
- Each x_j is represented as a **tuple** (v_j, m_j) such that : $X_i := \{(v_1, m_1), ..., (v_p, m_p)\}$
- The whole dataset can then be described as:

 $D := \{(X_1, y_1), \dots, (X_n, y_n)\}$

Paper in writting.

Evaluation: diabetes classification

- The **Pima Indians Diabetes**[3] database is composed of **768 samples** and **8** features.
- Up to 374 samples have missing values across 5 features.

Evaluation : benchmark

- **Benchmark**: Logistic regression, Random Forests and Gradient Boosting.
- Missing values need to be **imputed** first for the benchmark.

	Accuracy	F1-score	Precision	Sensitivity
Mean imp. + LR	0.753	0.61	0.70	0.52
Mean imp. + RF	0.772	0.65	0.71	0.59
Mean imp. + GB	0.727	0.59	0.62	0.56
Our method	0.792	0.71	0.68	0.74

Concluding remarks

- The problem of missing values is a **particularly sensitive** issue in the medical field.
- We proposed two **simple** yet **robust** models that yield good performances.
- Imputation methods should be used **sparingly** to avoid biases in the learning.

Ongoing work

- Develop a way to compute a **weighted aggregation**.
- Test the method on the AiPod data.
- Investigate the **combination** of the two approaches.

Thank you!

Assessing Multiple Imputation of Missing Values for Robust Analysis of Telehealth Kiosk Data

Hava Chaptoukaev, Maxime Beurey, Juliette Raffort, Maria A. Zuluaga

IA et santé : approches interdisciplinaires