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Introduction

• Telehealth allows the distribution of
health-related services.

• Promising avenue for prevention, and
remote diagnosis and monitoring of
diseases.

• Can be a solution when access to
care is restricted.
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Bodyo AiPod

• Stand-alone telehealth kiosk.

• Measures 27 health indicators in
6 minutes.

• 4 sensors collect information :

• a scale

• a body composition sensor

• an oximeter

• a blood pressure sensor
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Deploying the AiPod

• In non-clinical contexts sensors may fail, leading to incomplete data.

• If one sensor fails all measures collected by the sensor go missing.

• We cannot afford to discard incomplete observations.
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Problem:
How to deal with missing data?



Working with missing data

• We investigate two ways to deal with missing data:

• Imputation schemes to fill the missing values.

• A set approach that avoids imputation.
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Imputation of missing values
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Imputation schemes

• We still want to keep observations with missing values.

• Imputation schemes allow to fill missing values.

• Imputation needs to preserve the integrity of the original data.

7



Multiple Imputation with Denoising 
Autoencoders (MIDA)

• The MIDA architecture[1] imputes missing
values.

• Based on a denoising autoencoder.

• MIDA masker not suitable for our problem.

[1] Gondara, L., & Wang, K. (2018, June). Mida: Multiple imputation using denoising autoencoders. In Pacific-

Asia conference on knowledge discovery and data mining (pp. 260-272). Springer, Cham.
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Our Approach:
Modify the masker to imitate the pattern 

of a failing  sensor.



Evaluation : feature reconstruction error
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Evaluation : feature distribution
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Evaluation : blood pressure classification

Accuracy F1-score Precision Sensitivity

None 0.67 0.65 0.62 0.69

Mean 0.64 0.67 0.59 0.77

Our method 0.71 0.71 0.65 0.77

• Dataset: 329 samples with 24 features.

• Data from at least one of the sensors is missing for 48 samples.

• Use case: assess if imputation improves the binary classification of BP
categories according to 2 categories.
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Limitations of imputation

• There may be additional information, not collected by the sensors.

• In our dataset, only 105 samples (out of 329) have no missing values.

• Imputation of poorly represented information can introduce significant
biases in the learning process.
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Set approach to learn with missing values
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Set models

• Most classical machine learning models require fixed-dimensional
inputs.

• Sets allow to overcome this limitation.

• Good alternative to learn with missing values.
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Set models

• Idea: use permutation invariant neural networks.

• Permutation invariant function: indifferent to the ordering of its input.
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Deep Sets architecture

[2] Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R. R., & Smola, A. J. (2017). Deep 

sets. Advances in neural information processing systems, 30. 16



Our approach

• Each input vector Xi is encoded as a set of permutation invariant
observations xj.

• Each xj is represented as a tuple (vj, mj) such that :

Xi := {(v1, m1),…,(vp, mp)}

• The whole dataset can then be described as:

D := {(X1, y1),…,(Xn, yn)}
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Paper in writting. 

Our Approach:
Allows us to deal with missing values.



Evaluation: diabetes classification

• The Pima Indians Diabetes[3] database is composed of 768 samples and 8
features.

• Up to 374 samples have missing values across 5 features.

[3] https://www.kaggle.com/competitions/diabetes-classification/data
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Evaluation : benchmark

Accuracy F1-score Precision Sensitivity

Mean imp. + LR 0.753 0.61 0.70 0.52

Mean imp. + RF 0.772 0.65 0.71 0.59

Mean imp. + GB 0.727 0.59 0.62 0.56

Our method 0.792 0.71 0.68 0.74

• Benchmark: Logistic regression, Random Forests and Gradient
Boosting.

• Missing values need to be imputed first for the benchmark.
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Concluding remarks

• The problem of missing values is a particularly sensitive issue in the
medical field.

• We proposed two simple yet robust models that yield good
performances.

• Imputation methods should be used sparingly to avoid biases in the
learning.
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Ongoing work

• Develop a way to compute a weighted aggregation.

• Test the method on the AiPod data.

• Investigate the combination of the two approaches.
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