

G2PSR:

Bayesian Genome-to-Phenome Sparse Regression

IA et Santé : Approches interdisciplinaires

30/06/2022

Marie Deprez

A system biology approach ... toward multi-omics data integration

Rationale: A complex biological system is a combination of many simpler processes, which combination provides functional outputs of greater expressiveness than the sum of its part.

The analysis of multiple biological layers through system level approaches has already been reported to provide great insights in the study of complex diseases.

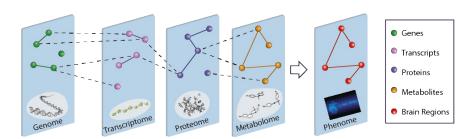


Fig: The interplay between biological layer

Challenges

- Large data dimensionality
- Limited effect size of biological features
- Wide heterogeneity in data type/properties
- Computational bottleneck
- Lack of flexibility to integrate both known and unknown interaction between omic layers

Interdisciplinary approach using Deep learning methods :

Bayesian Sparse Regression

A system biology approach ... toward multi-omics data integration

Rationale: A complex biological system is a combination of many simpler processes, which combination provides functional outputs of greater expressiveness than the sum of its part.

The analysis of multiple biological layers through system level approaches has already been reported to provide great insights in the study of complex diseases.

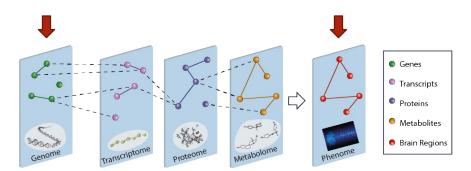


Fig: The interplay between biological layer

Challenges

- Large data dimensionality
- Limited effect size of biological features
- Wide heterogeneity in data type/properties
- Computational bottleneck
- Lack of flexibility to integrate both known and unknown interaction between omic layers

Interdisciplinary approach using Deep learning methods :

Bayesian Sparse Regression

Genome-to-Phenome neural network with biologically inspired constraint

Rationale: Predict multivariate phenotypic features from genetic data.

> Phenotypic data: clinical data, medical evaluation, ...

→ Check-up evaluation

(aptitude evaluation, cognition score ...)

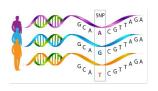
→ Physical examination

(Systolic and Diastolic Blood Pressure)

→ Laboratory measures (creatinine, hemoglobin, glucose ...)

→ Diagnostic procedures (Stress test, imaging results)

> Genetic data: Single Nucleotide Polymorphisme



Possible values:

0 – Homozygous reference

1 -- Heterozygous

2 – Homozygous alternative

Genome-to-Phenome neural network with biologically inspired constraint

Rationale: Predict multivariate phenotypic features from genetic data.

Phenotypic data: clinical data, medical evaluation, ...

→ Check-up evaluation

(aptitude evaluation, cognition score ...)

→ Physical examination

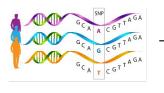
(Systolic and Diastolic Blood Pressure)

→ Laboratory measures

(creatinine, hemoglobin, glucose ...)

→ Diagnostic procedures (Stress test, imaging results)

> Genetic data: Single Nucleotide Polymorphisme



Possible values:

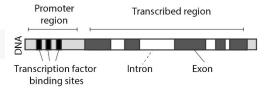
0 – Homozygous reference

1 -- Heterozygous

2 - Homozygous alternative

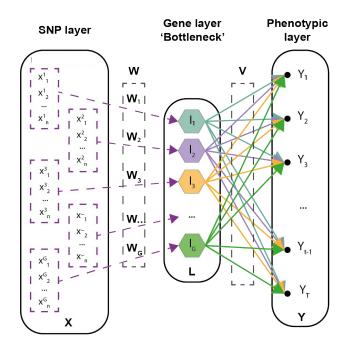
Constraint: Functional and structural relationship between SNPs within the transcribed or the regulation range of their associated gene.

→ SNPs-to-Gene matrix (n x g) with n the number of SNPs and g the number of genes containing the SNPs.



Schematic gene structure

Bayesian Genome-to-Phenome Sparse Regression



Biologically constrained Bayesian G2PSR

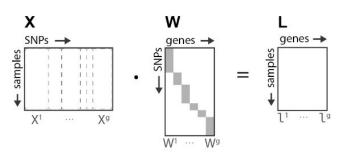
G2PSR generative model

 $oldsymbol{X}^{oldsymbol{g}}$ All SNPs associated to gene g

 $oldsymbol{W}^{oldsymbol{g}}$ Linear transformation mapping SNPs to their respective gene g.

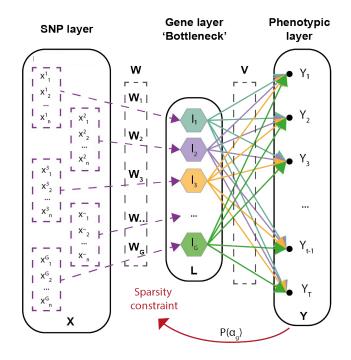
$$w_i = 0 i f i \notin A^{(g)}$$

$$L = X.W = (l^1, ..., l^g)$$
 Intermediate/gene layer



$$Y =$$
 Reconstruction of the phenotypic features Y $N(L, V, \Sigma)$ Variance of the observational noise

Bayesian Genome-to-Phenome Sparse Regression



Biologically constrained Bayesian G2PSR

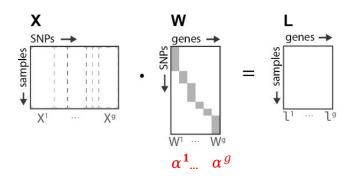
G2PSR group-sparsity constraint

 $oldsymbol{X^g}$ All SNPs associated to gene g

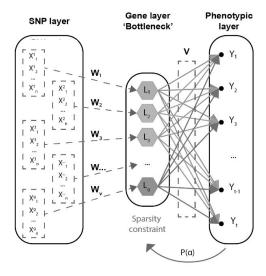
 $oldsymbol{W}^{oldsymbol{g}}$ Linear transformation mapping SNPs to their respective gene g.

Introduction of variational dropout as a group-wise regularisation technique.

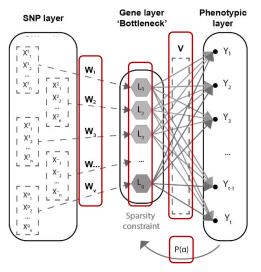
$$w_i^g = N(\mu_i^g, \alpha^g \cdot \mu_i^{g2})$$



Challenge of over-parametrized neural networks

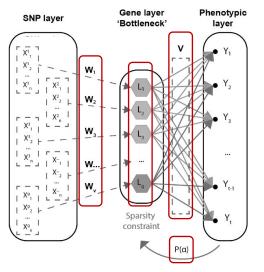


Challenge of over-parametrized neural networks



- Regression coefficients per SNPs
- Hidden layer
- Regression coefficients per genes
- Sparsity constraint per genes

Challenge of over-parametrized neural networks

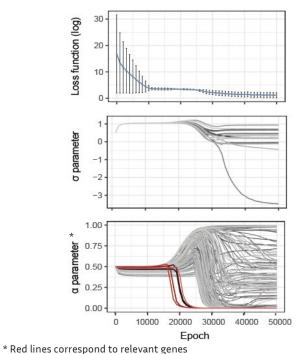


- Regression coefficients per SNPs
- Hidden layer
- Regression coefficients per genes
- Sparsity constraint per genes

Synthetic experiment

Attributes	Value
Number of genes	200 (~3500 SNPs)
Number of samples	500
Number of phenotypic features	15
Noise level	20%

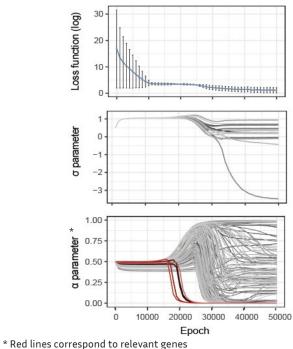
G2PSR optimization parameters



Overfitting heuristics

- Over-optimization of the loss
- Decrease of the observational noise variance
- → Identify an early-stopping strategy

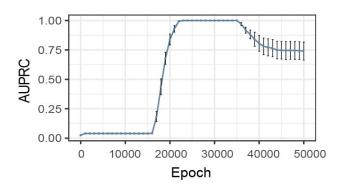
G2PSR optimization parameters



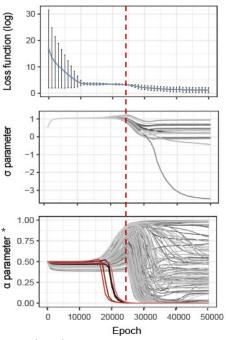
Overfitting heuristics

- Over-optimization of the loss
- Decrease of the observational noise variance
- → Identify an early-stopping strategy

Area Under the Precision-Recall Curve during G2PSR optimization



G2PSR optimization parameters

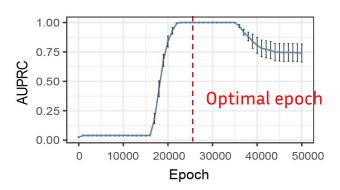


* Red lines correspond to relevant genes

Overfitting heuristics

- Over-optimization of the loss
- Decrease of the observational noise variance
- → Identify an early-stopping strategy

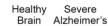
Area Under the Precision-Recall Curve during G2PSR optimization

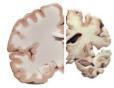


G2PSR applied to Alzheimer's Disease

- > Alzheimer's Disease is a progressive disease and the most common type of dementia
- > Induces modification in the brain structure (volume variation of different brain regions)
- > Mild to serious cognitive impairment (memory loss; disorientation; lack of coherent thinking pattern ...)
- Through the Alzheimer's Disease Neuroimaging Initiative database, we can access numerous biological modalities, such as **genetic**, proteomic, metabolomic and **imaging** data for more than 500 patients.

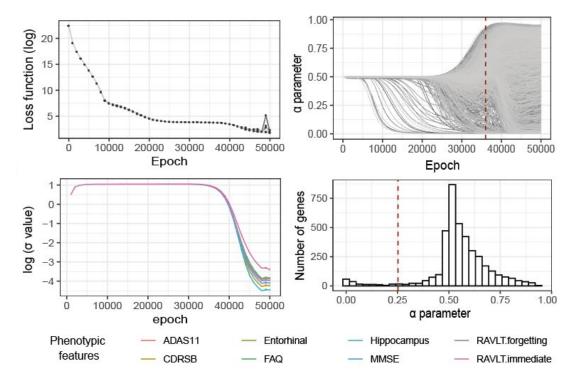
ADNI test dataset	Value
Number of genes	3953 (104854 SNPs)
Number of samples	491
Number of phenotypic features	8





- → Genes from KEGG pathways (186 pathways)
- → 150 CN, 200 MCI, 139 Dementia
- → Brain volumes (Hyppcampus, Entorhinal), Cognitive tests (ADAS, CDRSB, FAQ, MMSE, RAVLT)

Primary analysis



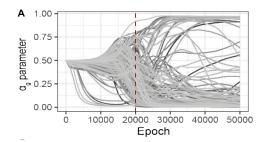
- Similarly to applications on synthetic experiments, we reproduce the early stopping strategy.
- \triangleright Analysis of the αg distribution at the optimal epoch:

Reference 'p-value' like distribution

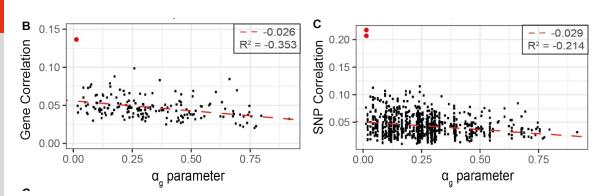
> Selection of 177 'significative' genes with $\alpha g < 0.25$

Gene	lpha parameter	
THOC3	8,65°-5	
MAT2B	9,18°-5	
CCL28	1,54 ^e -4	
NKD2	2,50 ^e -4	
RICTOR	2,85°-4	
AGXT2	4,37 ^e -4	
APOE	5,59°-4	

'Post-hoc' analysis



- Refined analysis on the selected genes to improve the experiment settings.
- Analysis of the mean correlation of each Genes and SNPs with all phenotypic features studied
- ightharpoonup Negative correlation between SNPs and lpha g parameter.



Gene	α g parameter
APOE	0,014
MAT2B	0,020
THOC3	0,021
NKD2	0,033
PTPN11	0,043
PI3KC2B	0,044
MCM2	0,051

Conclusions

- > We proposed a novel Genome-to-Phenome association method, using Bayesian Sparse Regression with biologically inspired constraint, **G2PSR**.
- > G2PSR performs better than state-of-the-art methods in synthetic experiments. Yet, each method gives a specific set of information on the Genome-to-Phenome association that cannot be match by our proposed model.
- > G2PSR performs well in a real case dataset despite the genomic features/samples ratio. The 2-steps workflow presented here help reduce the number of genes to be analysed, without *α priori* selection.

Perspectives

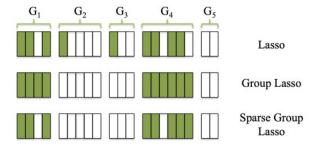
- > Implement variant pathogenicity scores as prior in the grouping constraint.
- > Benchmark the group constraint to integrate SNPs associated to multiple genes (regulatory regions)
- > Integrate other multi-omics data (RNA-seq, functional pathways constraint ...)

Deprez et al, 2022, Frontiers in Molecular Medicine

Thank you for your attention!

Comparison with state-of-the-art methods

> Sparse Group Lasso



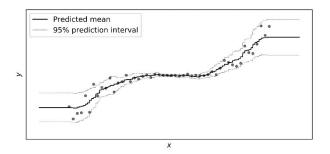
 l_1 -norm SNPs regularization

*l*₂-norm Genes / group regularization

Associated with a single phenotypic feature

[Simon N et al. 2013 Journal of Computational and graphical Statistics]

> Bayesian Group Sparse Multi-Task Regression

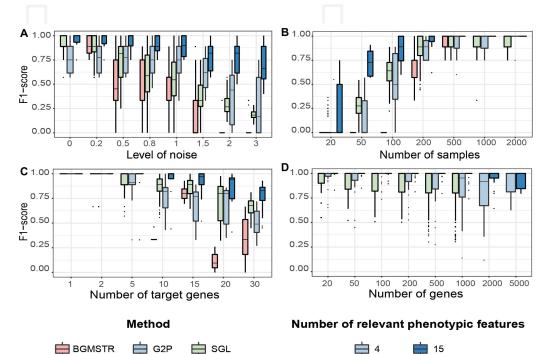


Inspired from Sparse Group Lasso but extended to:

- accommodate multivariate phenotypes,
- produce confidence intervals on regression coefficients.

[Greenlaw K et al. 2017 Bioinformatics]

Comparison with state-of-the-art methods



Reference dataset attributes	Value
Number of genes	200
Number of samples	500
Number of phenotypic features	15
Noise level	20%

With all phenotypic features associated to the genome, G2PSR performs better than state-of-the-art methods:

- Noise robustness
- Fewer number of samples required (statistical power)
- Improved sensibility to relevant genes
- Improve capacity to analyse large number of genes

