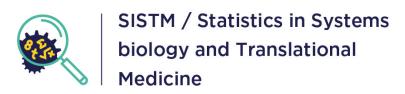
Analyzing transcriptomics data for understanding and predicting vaccine response in clinical trials

Rodolphe Thiébaut

Bordeaux, France

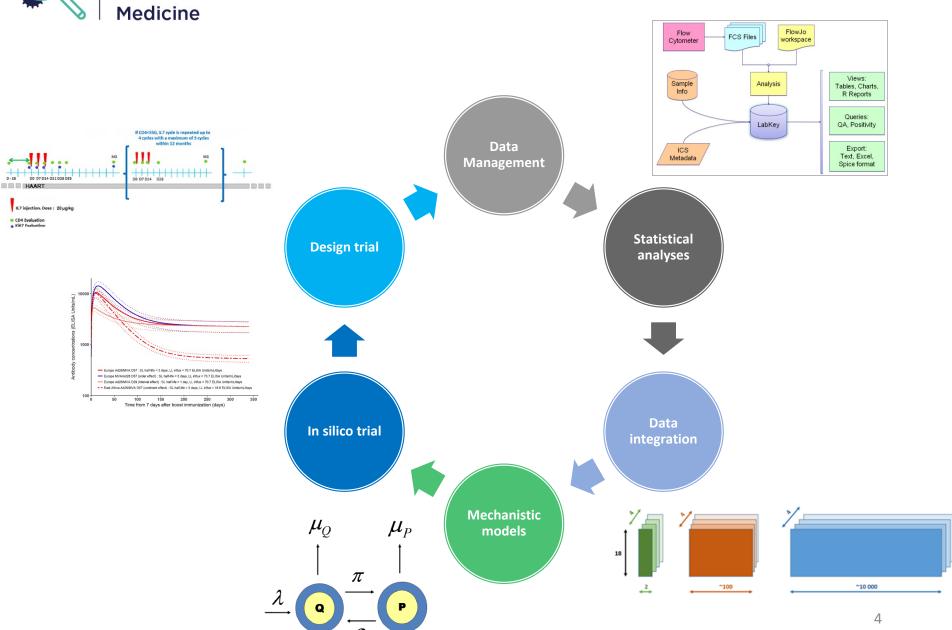
SISTM / Statistics in Systems biology and Translational Medicine



and its environment...

SISTM / Statistics in Systems biology and Translational

A big picture



Outline

Systems vaccinology

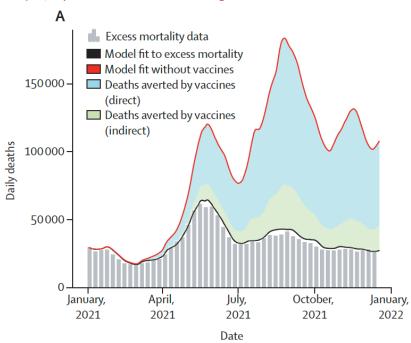
Gene expression differential analysis

Random forests for longitudinal data

Vaccines

Global impact of the first year of COVID-19 vaccination: a mathematical modelling study

Oliver J Watson*, Gregory Barnsley*, Jaspreet Toor, Alexandra B Hogan, Peter Winskill, Azra C Ghani

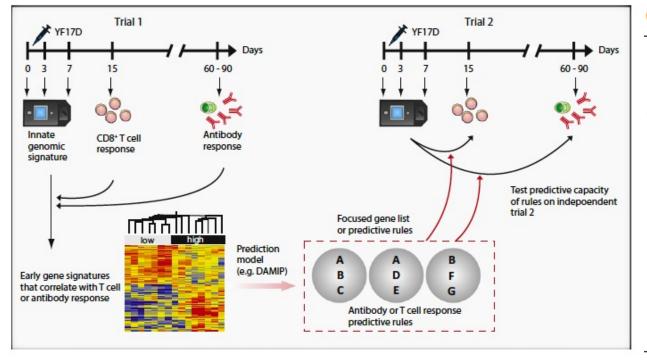


	Total COVID-19 deaths	Vaccination coverage (%)	Estimated deaths averted by vaccinations		
			Total	Per 10 000 people	Per 10 000 vaccines
Worldwide	5469000 (5339000-5613000)	38-30%	14 400 000 (13 650 000-15 900 000)	22.81 (21.63–25.18)	25.99 (24.64–28.69)

Systems vaccinology

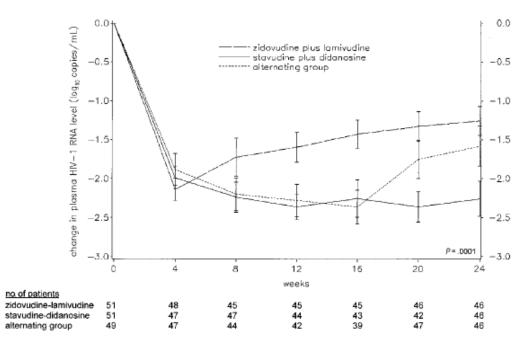
Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans

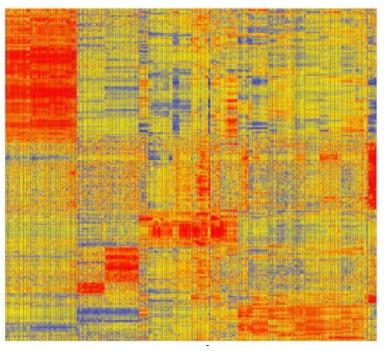
Troy D Querec^{1,8}, Rama S Akondy^{1,8}, Eva K Lee², Weiping Cao¹, Helder I Nakaya¹, Dirk Teuwen³, Ali Pirani⁴, Kim Gernert⁴, Jiusheng Deng¹, Bruz Marzolf⁵, Kathleen Kennedy⁵, Haiyan Wu⁵, Soumaya Bennouna¹, Herold Oluoch¹, Joseph Miller¹, Ricardo Z Vencio⁵, Mark Mulligan^{1,6}, Alan Aderem⁵, Rafi Ahmed¹ & Bali Pulendran^{1,7}



Gene ID	1	2	3
Hs.120591			
Hs.139006	X		
Hs.195471		X	
Hs.2556	X	X	X
Hs.368433			
Hs.481166			
Hs.63841	X	X	X
Hs.649726			
Hs.66180			X
	80	80	80
	100	100	100
	97	99	94
	Hs.120591 Hs.139006 Hs.195471 Hs.2556 Hs.368433 Hs.481166 Hs.63841 Hs.649726	Hs.120591 Hs.139006 X Hs.195471 Hs.2556 X Hs.368433 Hs.481166 Hs.63841 X Hs.649726 Hs.66180	Hs.120591 Hs.139006 X Hs.195471 X Hs.2556 X X Hs.368433 Hs.481166 Hs.63841 X X Hs.649726 Hs.66180

Data in vaccinology

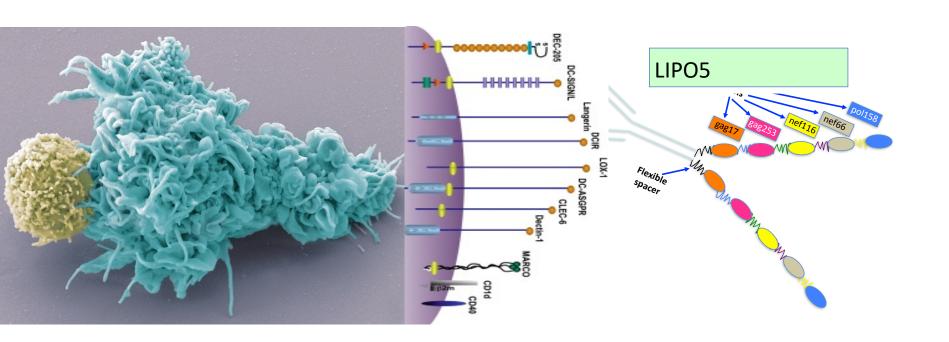




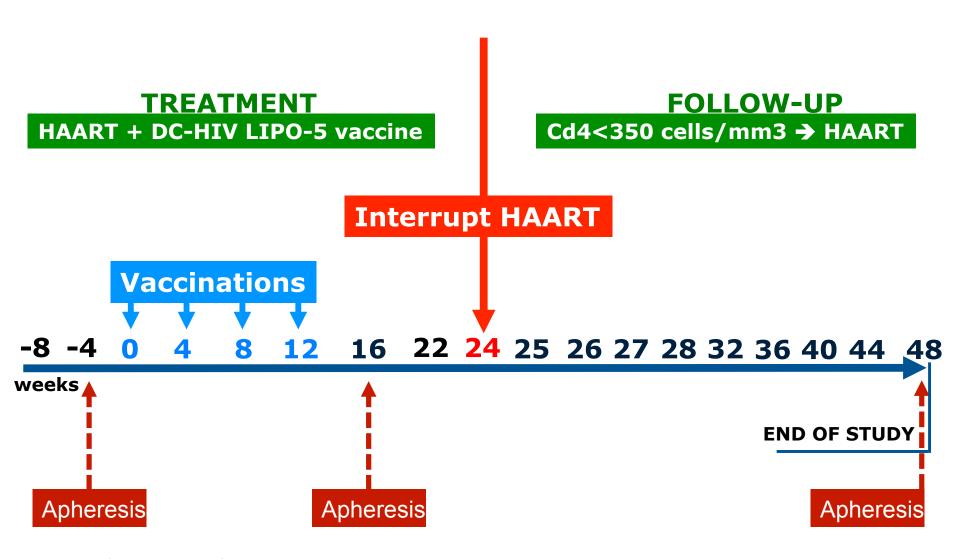
Trial	Year	Sample size	Folder size
ALBI ANRS 070	1999	151	67 Ko
DALIA-1	2014	19	200 Go

Dendritic cell based vaccine

- Therapeutic vaccine in HIV-infected patients
- Dendritic Cells are loaded with 5 HIV peptides



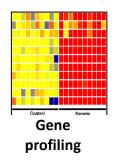
DALIA-1 trial design

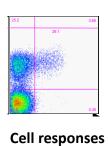


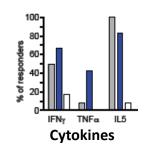
Data in vaccinology

- 846 000 probes (18 temps x 47 000 sondes) 26 Mo
- 18 612 000 beads (22 billes/sonde) 6 Go

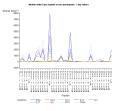
- 30 populations cellulaires 0.05 Mo
- 2160 anticorps (18 temps x 15 tubes x8 anticorps) pour 2.6 Go



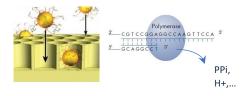




- 800 mesures/temps
- 0.35 Mo



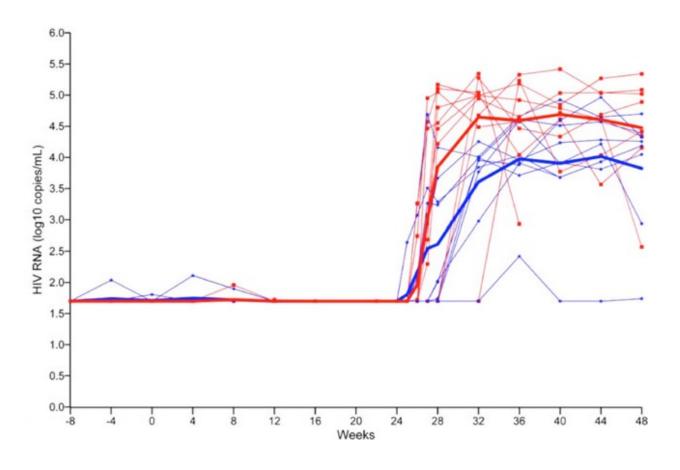
Epitope mapping



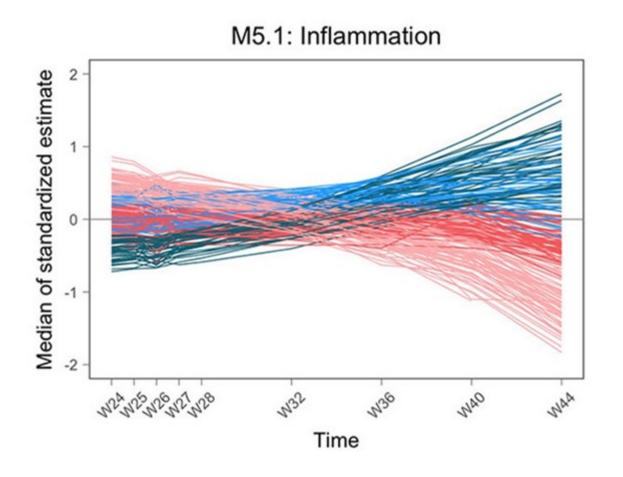
Viral changes/ adaptation

- 200 séquences
- 20 Mo

DALIA-1 results: HIV RNA viral load after treatment interruption



DALIA-1 results: gene expression was after treatment interruption



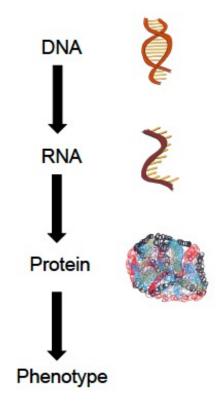
Aims

• To understand the mechanism of vaccine response

To predict the vaccine response

The gene expression (transcriptome)

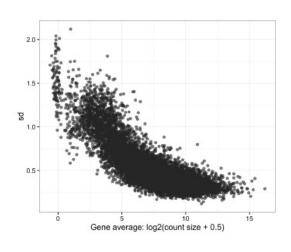
- Messenger RNA
- Measured by
 - Microarray: fluorescence intensity (continuous)
 - RNA-sequencing: count data
- Could be measured:
 - At the single-cell level
 - In the whole blood (bulk): gene abundance



RNA-seq differencial analysis

 Objective: to compare gene expression/abundance between/within groups

- Taking into account:
 - Test multiplicity (control of Type-I error and False Discovery rate)
 - RNA-seq data heterosckedasticity



RNA-seq differencial analysis

- The reference approaches
 - EdgeR: Robinson et al. Bioinformatics 2010 (>17K citations)
 - DESeq2: Love et al. Genome Biology 2014 (>24K citations)
 - Voom-lima: Law et al. Genome Biology 2014 (>2K citations)
- But limitations (Rapaport 2013, Rocke 2015, Germain 2016)
 - Strong parametric assumptions
 - Tailored for small studies

Dearseq method

Marine Gauthier

Boris Hejblum

We rely on the following **working model** for each gene g:

Model

$$\begin{aligned} \boldsymbol{y}_i &= \boldsymbol{\alpha}_0 + \boldsymbol{X}_i \boldsymbol{\alpha} + \boldsymbol{\Phi}_i \boldsymbol{\beta} + \boldsymbol{\Phi}_i \boldsymbol{\xi}_i + \boldsymbol{\epsilon}_i, \\ \boldsymbol{\xi}_i &\sim N(0, \boldsymbol{\Sigma}_{\boldsymbol{\xi}}), \boldsymbol{\epsilon}_i \sim N(0, \boldsymbol{\Sigma}_i) \\ \forall i = 1, ..., n \end{aligned}$$

- $y_i = (y_{i1}, \dots, y_{in_i})$ is a $n_i \times 1$ vector of normalized gene expression measurements
- α_0 is a $n_i \times 1$ vector of intercepts
- X_i is the $n_i \times p$ matrix of covariates
- α is a $p \times 1$ vector of fixed effects
- \bullet Φ_i is the $n_i \times m$ matrix of the variables of interest
- β is a $m \times 1$ vector of fixed effects
- $\xi_i \sim N(0, \Sigma_{\xi})$ is a $m \times 1$ vector of individual-level random effects of the variables of interest
- ullet ϵ_i is a $n_i imes 1$ vector of measurement error

Gauthier et al. NAR Genomics and Bioinformatics 2020

Dearseq method

Measurements errors: $\epsilon_i \sim N(0, \Sigma_i)$

$$v_{ij}^g = Var(y_{ij}^g \mid X_{ij}, \xi_i^g) \quad m_{ij}^g = E(y_{ij}^g \mid X_{ij}, \xi_i^g)$$

Following Law et al., we model the mean-variance relationship at the gene level through Σ_i :

$$v^g = \omega(m^g) + e^g$$

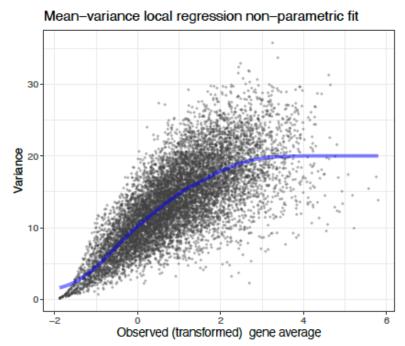
for some unknown function $\omega(.)$ and

$$E(e^g) = 0, V(e^g) = \tau^2, \tau > 0.$$

⇒ Local linear regression [Wasserman, 2006] borrowing information across all genes

$$diag(\widehat{\Sigma}_{i}^{g}) = \widehat{\omega}_{n}(\widehat{m}_{ij}^{(g)})$$

The parameters are estimated by Ordinary Least Square.



Gauthier et al. NAR Genomics and Bioinformatics 2020

Dearseq method

We derive a variance component score test statistic for the effects of interest. The null hypothesis of no effect of interest is:

$$H_0: "\beta = 0 \text{ and } \Sigma_{\xi} = 0"$$

Under H_0 , $Q = q^T q$

with
$$q^T = n^{-1/2} \sum_{i=1}^n \boldsymbol{y}_{\mu_i}^T \Sigma_i^{-1} \Phi_i$$

where $\boldsymbol{y}_{\mu_i} = \boldsymbol{y}_i - \boldsymbol{\mu}_i = \boldsymbol{y}_i - \boldsymbol{\alpha}_{i0} + X_i \boldsymbol{\alpha}$

Asymptotic test

$$Q \sim \sum_{l=1}^{n_i} a_l \chi_1^2$$

where the mixing coefficients a_l depend on the covariance of q

Permutation test

Permutations \Rightarrow Naive p-values [Phipson & Smyth (2010)]

⇒ exact p-values computations

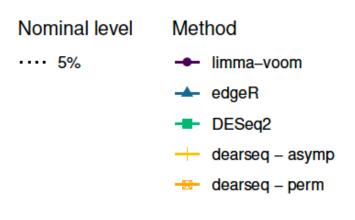
⇒ Benjamini-Hochberg (1995) correction for multiple testing

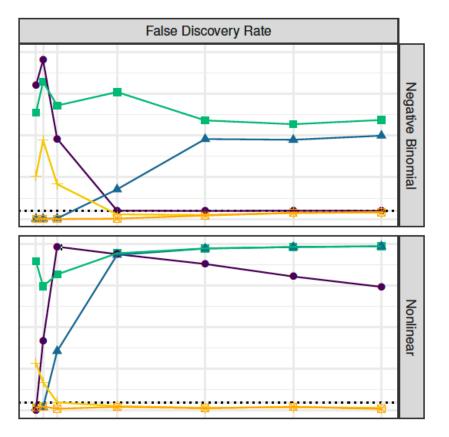
Simulations

• Monte Carlo estimation over 1000 simulations (non

linear relationship)

False Discovery Rate





Valorisation

Package dearseq



Volume 2, Issue 4 December 2020

dearseq: a variance component score test for RNAseq differential analysis that effectively controls the false discovery rate 3

Marine Gauthier, Denis Agniel, Rodolphe Thiébaut, Boris P Hejblum 🗷

NAR Genomics and Bioinformatics, Volume 2, Issue 4, December 2020, Iqaa093, https://doi.org/10.1093/nargab/Iqaa093

Published: 19 November 2020 Article history ▼

Oups, were we wrong?

Li et al. Genome Biology (2022) 23:79 https://doi.org/10.1186/s13059-022-02648-4

Genome Biology

SHORT REPORT

Open Access

Exaggerated false positives by popular differential expression methods when analyzing human population samples

Yumei Li^{1†}, Xinzhou Ge^{2†}, Fanglue Peng³, Wei Li^{1*} and Jingyi Jessica Li^{2,4,5,6,7*}

Abstract

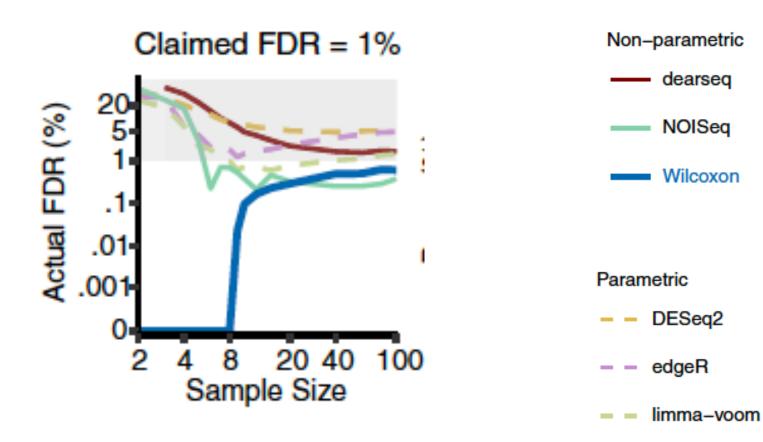
When identifying differentially expressed genes between two conditions using human population RNA-seq samples, we found a phenomenon by permutation analysis: two popular bioinformatics methods, DESeq2 and edgeR, have unexpectedly high false discovery rates. Expanding the analysis to limma-voom, NOISeq, dearseq, and Wilcoxon rank-sum test, we found that FDR control is often failed except for the Wilcoxon rank-sum test. Particularly, the actual FDRs of DESeq2 and edgeR sometimes exceed 20% when the target FDR is 5%. Based on these results, for population-level RNA-seq studies with large sample sizes, we recommend the Wilcoxon rank-sum test.

^{*}Correspondence: wei.li@uci.edu; lijy03@g. ucla.edu

[†]Yumei Li and Xinzhou Ge contributed equally to this work.

¹ Division of Computational Biomedicine, Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA ² Department of Statistics,

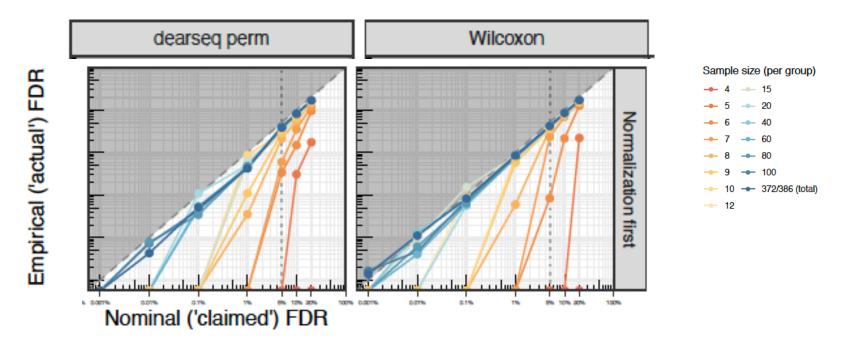
Oups, were we wrong?



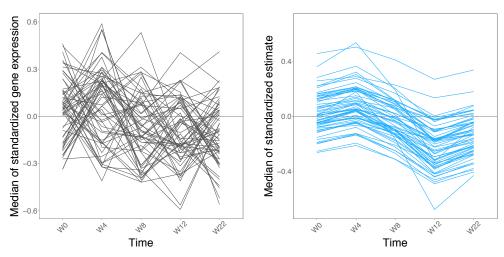
Actually, no. It is ok.

Neglecting normalization impact in semi-synthetic RNA-seq data simulation generates artificial false positives

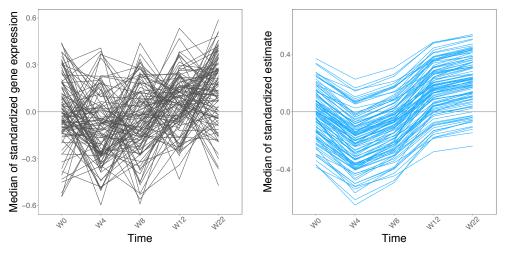
Boris P Hejblum^{1,2,*}, Kalidou Ba^{1,2}, Rodolphe Thiébaut^{1,2,3}, Denis Agniel^{4,5}



Time course geneset analysis



M 4.1: T cell – 86th percentile



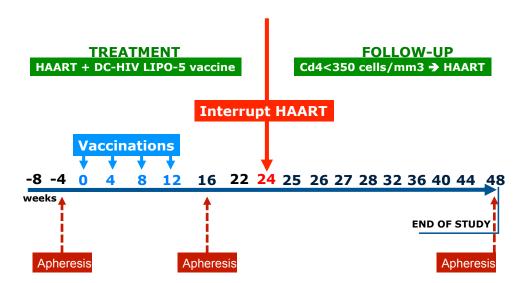
M 4.6: Inflammation – 96th percentile

```
M3.2[99th pctile]: Inflammation 1/1
M1.1[99th pctile]: Platelets 1/1
M4.13[98th pctile]: Inflammation 1/1
wb. 10197th petiler: iviltochondrial Respiration 1/1
M4.6[96th\ pctile]: Inflammation 1/1
vis.ojeoth petilej. Wiltochondrial Stress / Proteasome 1/1
M3.5[95th pctile]: Cell Cycle 1/1
M5.7[94th pctile]: Inflammation 1/1
M3.1|94th pctile]: Erythrocytes 1/1
M2 3[94th notile]: Frythrocytes 1/1
M7.1[93th pctile]: Inflammation 1/1
M6.2[93th pctile]: Mitochondrial Respiration 1/1
M4.3[91th pctile]: Protein Synthesis 1/1
M4.11[91th pctile]: Plasma Cells 1/3
M4.11[91th pctile]: Plasma Cells 2/3
M4.11[91th pctile]: Plasma Cells 3/3
M6.13|90th pctile|: Cell Death 1/1
M4.5[89th pctile]: Protein Synthesis 1/1
M4.14[88th pctile]: Monocytes 1/1
M4.2[88th pctile]: Inflammation 1/1
M4./18/th pctile]: Cell Cycle 1/1
M4.1[86th pctile]: T cell 1/1
M3.6|85th pctile|: Cytotoxic/NK Cell 1/1
M5.9[84th pctile]: Protein Synthesis 1/1
M5.15[82th pctile]: Neutrophils 1/1
M4.15[81th pctile]: T cells 1/1
M6.6180th pctile1: Apoptosis / Survival 1/1
M5.1[74th pctile]: Inflammation 1/1
```

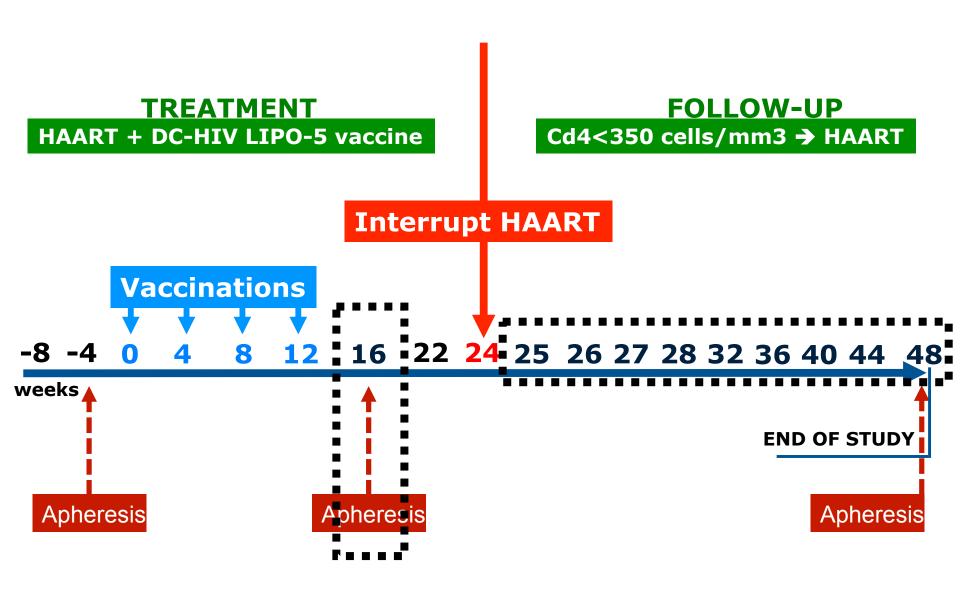
Question

 Knowing which genes / genesets are moving over time,

 which ones are associated to the viral load dynamics?



DALIA-1 trial design Integrative Analysis



Sparse group Partial Least Squares method

Benoit Liquet

Number of predictors (genes) > number of patients:

Regression method

- Independent linear combinations of predictors, ie genes
- ➤ Independent linear combinations of explaining variables, ie **immunological measures**
- Components maximize their covariance

Penalization method

- Select only a few predictors, i.e. genes
- Sparse: all non selected predictorCoefficients are estimated as exactly 0

- Each **sPLS** component is **sparse:** only a few variables contributes to each components
- Selection could be done by group of genes

Group PLS

Aim: Select group variables taking into account the data structures

PLS components

$$C^k = u_1 \times X_1 + u_2 \times X_2 + u_3 \times X_3 + \ldots + u_p \times X_p$$

sparse PLS components (sPLS)

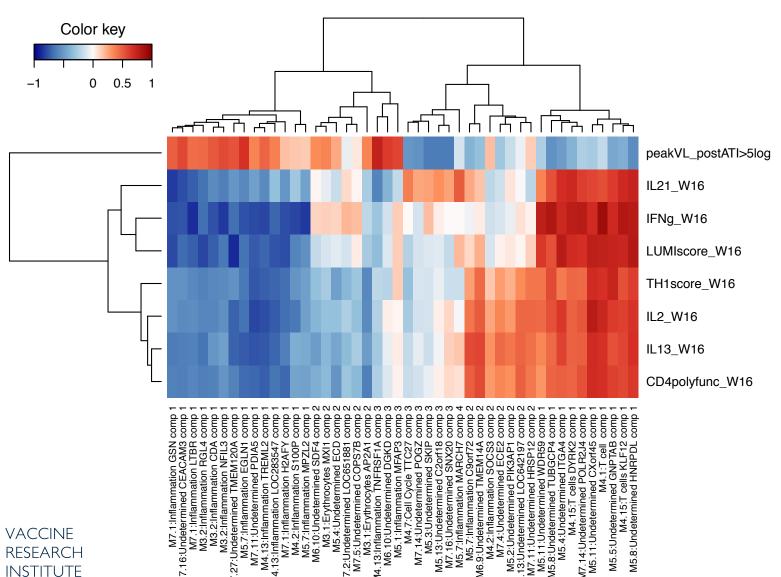
$$C^k = u_1 \times X_1 + \underbrace{u_2}_{=0} \times X_2 + \underbrace{u_3}_{=0} \times X_3 + \ldots + u_p \times X_p$$

group PLS components (gPLS)

$$C^{k} = \underbrace{\begin{array}{c} module_{1} \\ u_{1} \\ = 0 \end{array}}_{=0} \underbrace{\begin{array}{c} Module_{2} \\ X_{2} \\ = 0 \end{array}}_{\neq 0} \underbrace{\begin{array}{c} Module_{2} \\ X_{3} \\ \neq 0 \end{array}}_{\neq 0} \underbrace{\begin{array}{c} Module_{2} \\ X_{1} \\ \neq 0 \end{array}}_{\neq 0} \underbrace{\begin{array}{c} Module_{2} \\ X_{2} \\ = 0 \end{array}}_{=0} \underbrace{\begin{array}{c} Module_{2} \\ X_{p-1} \\ = 0 \end{array}}_{=0} \underbrace{\begin{array}{c} Module_{2} \\ X_{p-1}$$

→ select group of variables; all the variables within a group are selected
otherwise none of them are selected

Correlations with immune response (W16) and peak of viral load (post ATI)



Need more

To take into account longitudinal setting

Repeated measures of HIV RNA viral load

Repeated measures of gene abundance

Article

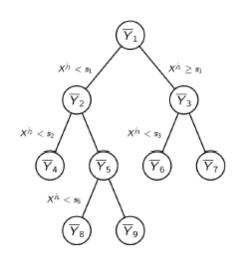
Random forests for high-dimensional longitudinal data

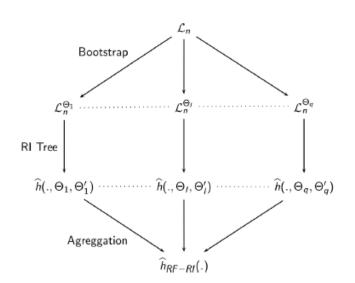
Statistical Methods in Medical Research 0(0) 1–19

© The Author(s) 2020 Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/0962280220946080 journals.sagepub.com/home/smm

\$SAGE

Louis Capitaine , Robin Genuer and Rodolphe Thiébaut





Model

Suppose Y_{ij} , the viral load of the *i*th individual at time t_{ij} , satisfies

$$Y_{ij} = f(X_{ij}) + Z_{ij}b_i + \omega_i(t_{ij}) + \varepsilon_i \quad \forall i = 1, \dots, n; j = 1, \dots, n_i$$

- $f: \mathbb{R}^p \longrightarrow \mathbb{R}$: unknown regression function X_{ij} the $p \times 1$ vector of covariates: fixed effects matrix (gene expressions)
- $b_i \sim \mathcal{N}(0,B)$: random effects, Z_{ij} the $1 \times q$ random effects covariates
- $(\omega_i(t))_{t\geq 0}$: centered Gaussian process with covariance function $\gamma^2 K_i(s,t)$
- $\varepsilon_{ij} \sim \mathcal{N}(0, \sigma^2)$: residual error

Algorithm 1: General estimation procedure for model (1)

Initialization: Let r = 0, $\hat{b}_{i,(0)} = 0_q$, $\hat{\omega}_{i,(0)} = 0_{n_i}$, $\hat{B}_{(0)} = I_q$, $\hat{\gamma}_{(0)}^2 = 1$ and $\hat{\sigma}_{(0)}^2 = 1$. Repeat

1. Set r = r + 1, compute $\tilde{Y}_{ij,(r-1)} = Y_{ij} - Z_{ij}\hat{b}_{i,(r-1)} - \hat{\omega}_{ij,(r-1)}$ estimate f in the standard regression framework (with all N observations):

$$\tilde{Y}_{ij,(r-1)} = f(X_{ij}) + \varepsilon_{ij}$$

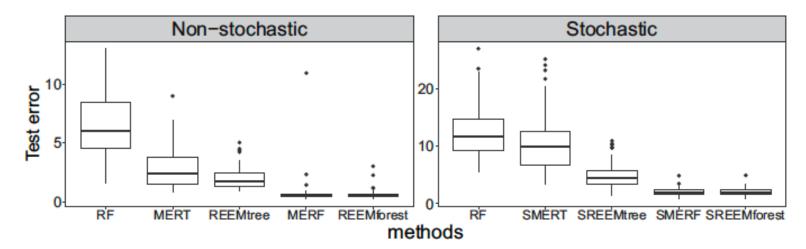
to get $\hat{f}_{i,(r)}$. Then predict $\hat{b}_{i,(r)}$ and $\hat{\omega}_{i,(r)}$ using $\hat{B}_{(r-1)}$, $\hat{\gamma}^2_{(r-1)}$, $\hat{\sigma}^2_{(r-1)}$ and $\hat{f}_{i,(r)}$.

2. Update $\hat{B}_{(r)}$, $\hat{\gamma}_{(r)}^2$ and $\hat{\sigma}_{(r)}^2$ using $\hat{f}_{i,(r)}$, $\hat{b}_{i,(r)}$ and $\hat{\omega}_{i,(r)}$,

until convergence;

Table 3. Squared bias of the estimated parameters, averaged on 100 datasets respectively simulated under model (4) and (5) in the high-dimensional case.

	f	В	γ²	σ^2
Non-stochastic model				
MERT	1.902	0.603	*	0.112
REEMtree	1.543	0.499	*	0.070
MERF	0.750	0.504	*	0.005
REEMforest	0.729	0.493	*	0.005
Stochastic model				
SMERT	5.229	0.926	0.113	0.590
SREEMtree	3.519	0.738	0.071	0.065
SMERF	1.378	0.511	0.024	0.010
SREEMforest	1.367	0.496	0.023	0.011



Application to DALIA-1

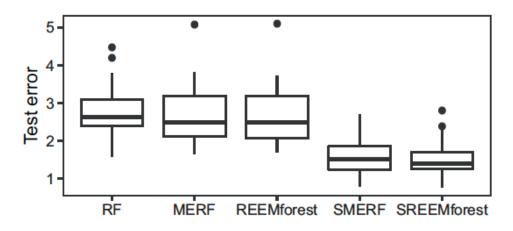
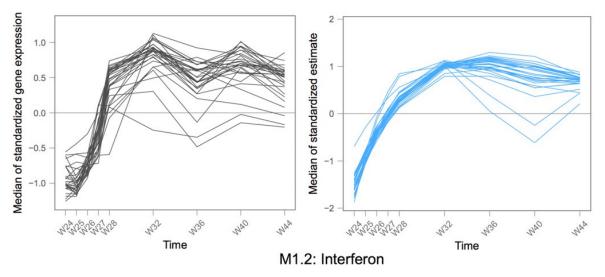
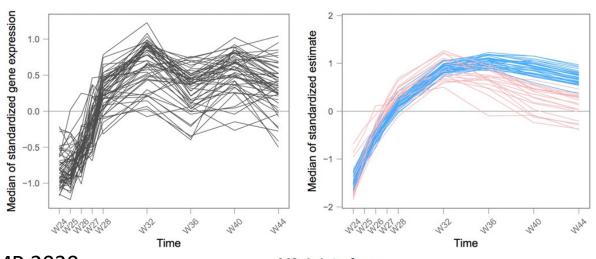


Figure 10. Boxplots of test errors computed using 25 training/test sets random splits, for Breiman's RF, MERF, REEMforest, SMERF, and SREEMforest, DALIA trial.

Application to DALIA-1



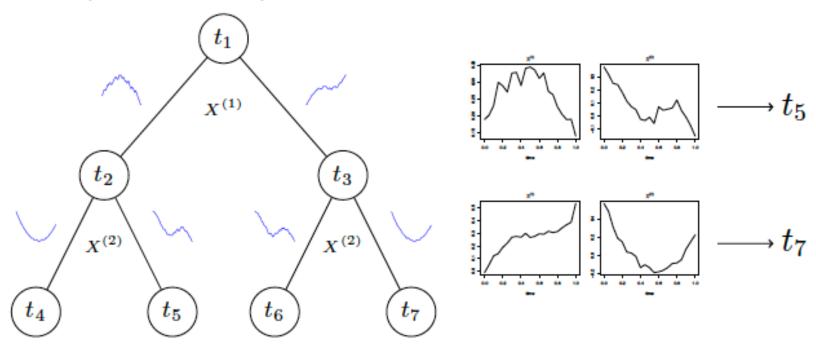


Capitaine et al. SMMR 2020

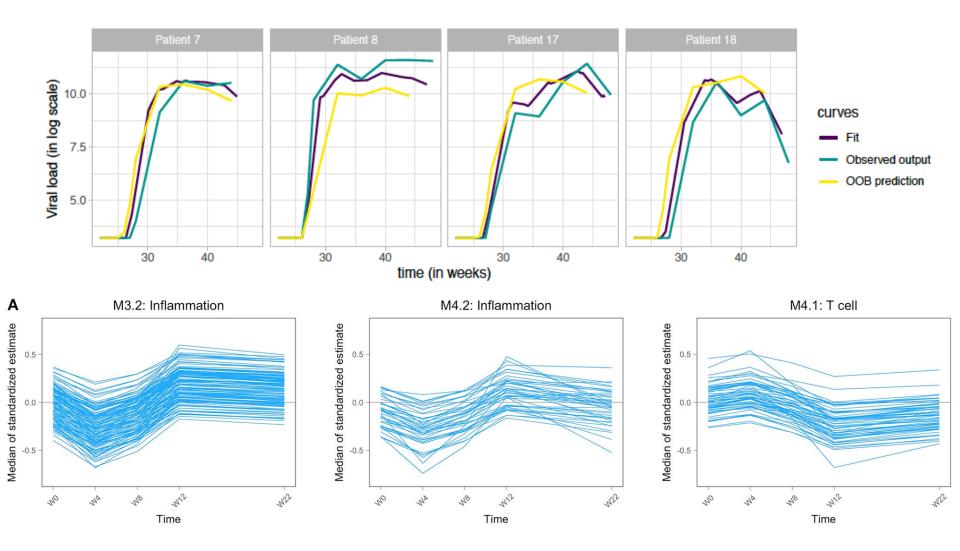
M3.4: Interferon

Frechet random forest

- We use a shape-based distance between curves: the Fréchet distance.
- The split function is the 2-means algorithm adapted to curves (Genolini et.al. 2016).

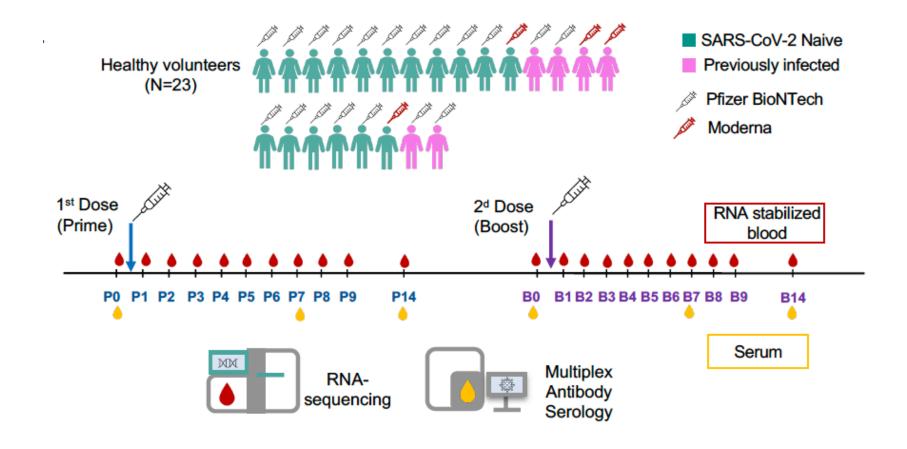


Frechet random forest

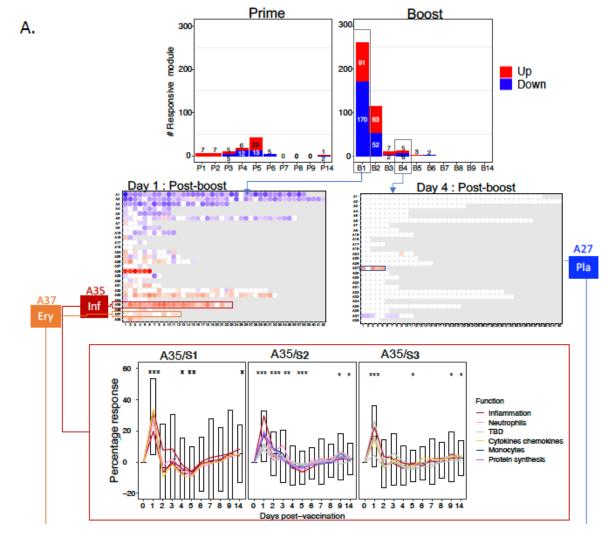


Capitaine et al. https://arxiv.org/abs/1906.01741

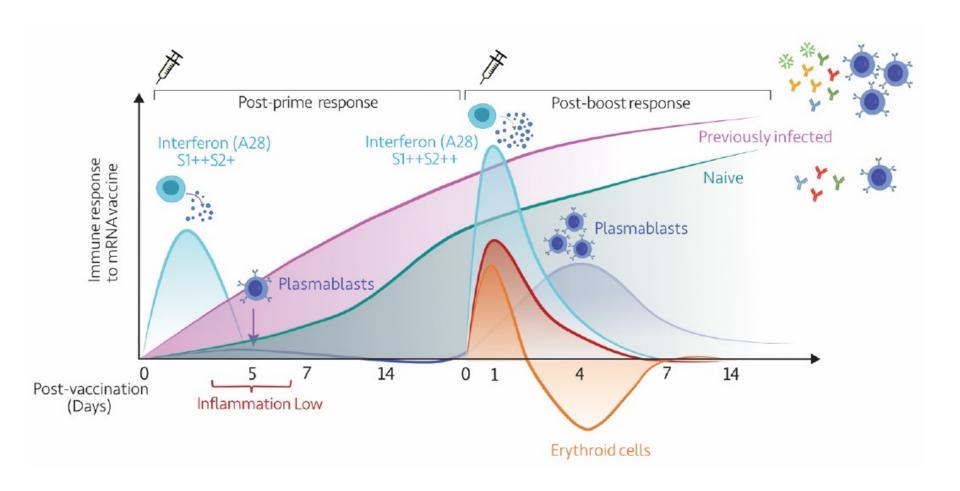
Application for COVID19 vaccine



Application for COVID19 vaccine



Application for COVID19 vaccine



Chaussabel et al. https://www.biorxiv.org/content/10.1101/2021.12.12.472257v2

Acknowledgments SISTM team and other collaborators

http://www.snb2022.paris/

Emilie Kaufmann

Stephen SennEwout Steyerberg

The sparse Partial Least Squares method

Number of predictors (genes) > number of patients:

PLS + LASSO

Regression method

- Independent linear combinations of predictors, ie genes
- ➤ Independent linear combinations of explaining variables, ie **immunological measures**
- Components maximize their covariance

Penalization method

- Select only a few predictors, i.e. genes
- Sparse: all non selected predictor Coefficients are estimated as exactly 0

Each **sPLS** component is **sparse:** only a few variables contributes to each components

Aims:

- 1. Symmetric situation. Analysis the associations between two blocks of information, analysis focuses on shared information.
- 2. Asymmetric situation. **X** matrix= predictors and **Y** matrix= responses variables, analysis focuses on prediction.
- Partial Least Square Family: dimension reduction approaches
 - PLS find pairs of latent vectors $C_X = Xu$, $C_Y = Yv$ with maximal covariance.

e.g.,
$$\mathbf{C}_{\mathbf{X}} = u_1 \times SNP_1 + u_2 \times SNP_2 + \ldots + u_p \times SNP_p$$

- Symmetric situation and Asymmetric situation.
- Successive matrix decomposition of X and Y into new latent variables.

PLS

- Output of PLS: K pairs of latent variables $(\mathbf{C_X}^K, \mathbf{C_Y}^K)$, k = 1, ..., K with K << min(p, q).
- Reduction method but no variable selection for extracting the most relevant variables from each latent variables.

sparse PLS

- sparse PLS select the relevant SNPs
- Some coefficients u_l are equal to 0 $C^k = u_1 \times SNP_1 + \underbrace{u_2}_{=0} \times SNP_2 + \underbrace{u_3}_{=0} \times SNP_3 + \ldots + u_p \times SNP_p$
- The sPLS components are linear combinations of the selected variables

Group PLS

Aim: Select group variables taking into account the data structures

PLS components

$$C^k = u_1 \times X_1 + u_2 \times X_2 + u_3 \times X_3 + \ldots + u_p \times X_p$$

sparse PLS components (sPLS)

$$C^k = u_1 \times X_1 + \underbrace{u_2}_{=0} \times X_2 + \underbrace{u_3}_{=0} \times X_3 + \ldots + u_p \times X_p$$

group PLS components (gPLS)

$$C^{k} = \underbrace{\begin{array}{c} \text{module}_{1} \\ u_{1} \\ = 0 \end{array}}_{=0} \underbrace{\begin{array}{c} \text{module}_{2} \\ u_{2} \\ = 0 \end{array}}_{\neq 0} \underbrace{\begin{array}{c} \text{module}_{2} \\ X_{3} \\ \neq 0 \end{array}}_{\neq 0} \underbrace{\begin{array}{c} \text{module}_{2} \\ X_{1} \\ \neq 0 \end{array}}_{\neq 0} \underbrace{\begin{array}{c} \text{module}_{K} \\ U_{p-1} \\ \neq 0 \end{array}}_{=0} \underbrace{\begin{array}{c} \text{module}_{K} \\ U_{p-1} \\ \downarrow U_{p-1} \\ \downarrow$$

→ select group of variables; all the variables within a group are selected
otherwise none of them are selected

Sparse Group PLS

Aim: combine both sparsity of groups and within each group. Example, *X* matrix= genes, we might be interested in identifying particularly important genes in pathways of interest.

sparse PLS components (sPLS)

$$C^k = u_1 \times X_1 + \underbrace{u_2}_{=0} \times X_2 + \underbrace{u_3}_{=0} \times X_3 + \ldots + u_p \times X_p$$

group PLS components (gPLS)

$$C^{k} = \underbrace{\begin{array}{c} module_{1} \\ u_{1} \\ = 0 \end{array}}_{=0} \underbrace{\begin{array}{c} M_{1} \\ X_{1} \\ = 0 \end{array}}_{=0} \underbrace{\begin{array}{c} M_{2} \\ X_{2} \\ \neq 0 \end{array}}_{\neq 0} \underbrace{\begin{array}{c} M_{2} \\ X_{3} \\ \neq 0 \end{array}}_{\neq 0} \underbrace{\begin{array}{c} M_{2} \\ X_{1} \\ \neq 0 \end{array}}_{\neq 0} \underbrace{\begin{array}{c} M_{2} \\ X_{2} \\ = 0 \end{array}}_{=0} \underbrace{\begin{array}{c} M_{2} \\ X_{p-1} \\ = 0 \end{array}}_{=0} \underbrace{\begin{array}{c$$

sparse group PLS components (sgPLS)

$$C^{k} = \underbrace{\begin{array}{c} module_{1} \\ u_{1} \\ = 0 \end{array}}_{=0} \underbrace{\begin{array}{c} X_{1} \\ X_{2} \\ = 0 \end{array}}_{\neq 0} \underbrace{\begin{array}{c} module_{2} \\ u_{3} \\ \neq 0 \end{array}}_{=0} \underbrace{\begin{array}{c} M_{2} \\ X_{3} \\ = 0 \end{array}}_{=0} \underbrace{\begin{array}{c} module_{K} \\ U_{5} \\ = 0 \end{array}}_{=0} \underbrace{\begin{array}{c} module_{K} \\ U_{p-1} \\ U_{p-1} \\ = 0 \end{array}}_{=0} \underbrace{\begin{array}{c} module_{K} \\ U_{p-1} \\ U_{$$

Optimisation problem

PLS

$$\min_{||\tilde{\boldsymbol{u}}||_2=1,\tilde{\boldsymbol{v}}} ||\boldsymbol{X}^{\mathrm{T}}\boldsymbol{Z} - \tilde{\boldsymbol{u}}\tilde{\boldsymbol{v}}^{\mathrm{T}}||_F^2 \qquad (\text{respectively,min}_{\tilde{\boldsymbol{u}},||\tilde{\boldsymbol{v}}||_2=1} ||\boldsymbol{X}^{\mathrm{T}}\boldsymbol{Z} - \tilde{\boldsymbol{u}}\tilde{\boldsymbol{v}}^{\mathrm{T}}||_F^2)$$

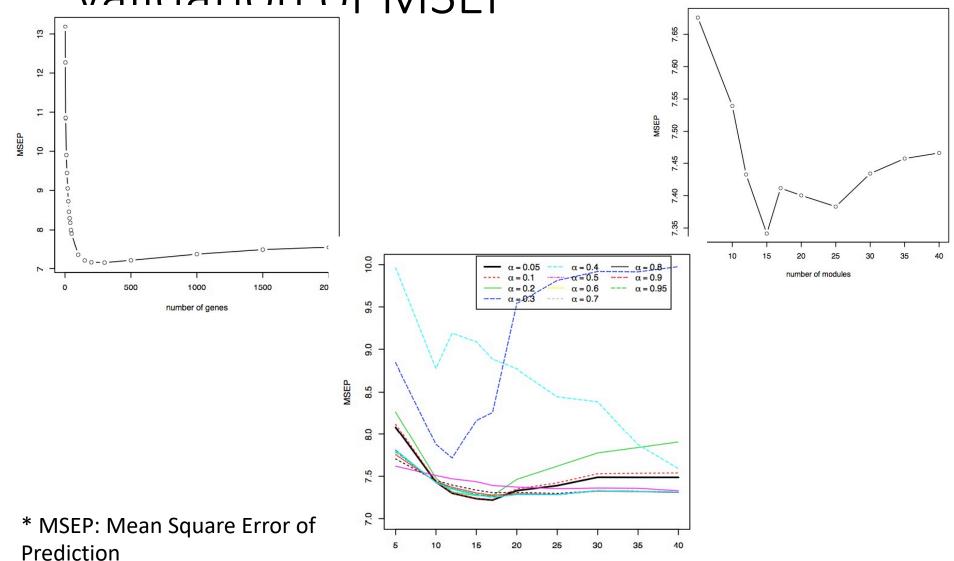
sPLS

$$\min_{oldsymbol{u}_b,oldsymbol{v}_b}||oldsymbol{M}_b-oldsymbol{u}_boldsymbol{v}_b^{ ext{T}}||_F^2+P_{\lambda_{1,b}}(oldsymbol{u}_b)+P_{\lambda_{2,b}}(oldsymbol{v}_b)$$

$$P_{\lambda_{1,b}}(u_b) = \sum_{i=1}^p 2\lambda_1^b |u_{i,b}|$$

$$P_{\lambda_{2,h}}(v_h) = \sum_{j=1}^{q} 2\lambda_2^h |v_{j,h}|$$

Choice of penalty by 5-fold cross validation of MSEP*



Number of groups