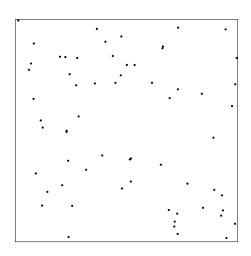
The accumulated persistence function, a new useful functional summary statistic for topological information, with an application to spatial point processes

Christophe A. N. Biscio and Jesper Møller, Aalborg University

 $May\ 26,\ 2016$

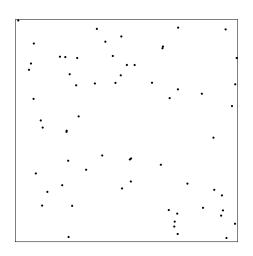
$Persistent\ homology\ \hbox{--}\ Delaunay\ complex\ filtration$

 \bullet Persistent homology recovers the tolopological information from a spatial point process $\mathbf{X}.$

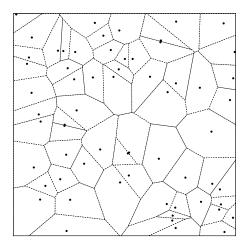


$Persistent\ homology\ \hbox{--}\ Delaunay\ complex\ filtration$

- \bullet Persistent homology recovers the tolopological information from a spatial point process $\mathbf{X}.$
- We construct a so called Delaunay complex filtration.

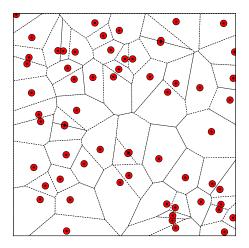


- \bullet Persistent homology recovers the tolopological information from a spatial point process $\mathbf{X}.$
- We construct a so called Delaunay complex filtration.
- ullet The union of balls of radius r intersected with the Voronoi tessellation.



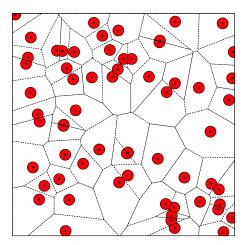
• r = 0, a point \sim a connected component.

- \bullet Persistent homology recovers the tolopological information from a spatial point process $\mathbf{X}.$
- We construct a so called Delaunay complex filtration.
- ullet The union of balls of radius r intersected with the Voronoi tessellation.



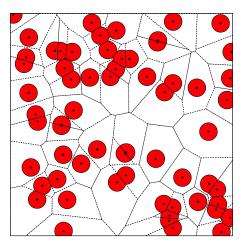
• r = 0, a point \sim a connected component.

- \bullet Persistent homology recovers the tolopological information from a spatial point process $\mathbf{X}.$
- We construct a so called Delaunay complex filtration.
- ullet The union of balls of radius r intersected with the Voronoi tessellation.



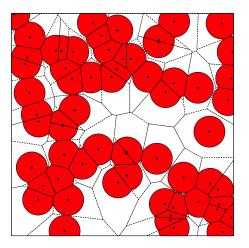
• r = 0, a point \sim a connected component.

- \bullet Persistent homology recovers the tolopological information from a spatial point process $\mathbf{X}.$
- We construct a so called Delaunay complex filtration.
- \bullet The union of balls of radius r intersected with the Voronoi tessellation.



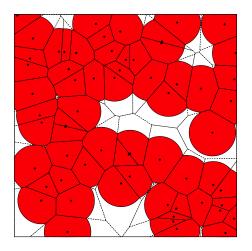
- r = 0, a point \sim a connected component.
- Balls intersect ~ connected components die.

- \bullet Persistent homology recovers the tolopological information from a spatial point process $\mathbf{X}.$
- We construct a so called Delaunay complex filtration.
- \bullet The union of balls of radius r intersected with the Voronoi tessellation.



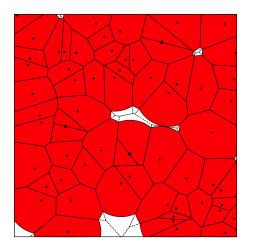
- r = 0, a point \sim a connected component.
- Balls intersect \sim connected components die.
- Holes may appear (birth).

- \bullet Persistent homology recovers the tolopological information from a spatial point process $\mathbf{X}.$
- We construct a so called Delaunay complex filtration.
- The union of balls of radius r intersected with the Voronoi tessellation.



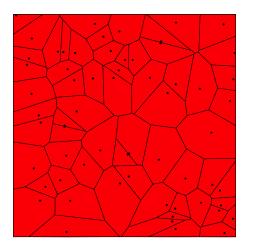
- r = 0, a point \sim a connected component.
- Balls intersect \sim connected components die.
- Holes may appear (birth).
- Holes may disappear (death).

- \bullet Persistent homology recovers the tolopological information from a spatial point process $\mathbf{X}.$
- We construct a so called Delaunay complex filtration.
- The union of balls of radius r intersected with the Voronoi tessellation.



- r = 0, a point \sim a connected component.
- Balls intersect \sim connected components die.
- Holes may appear (birth).
- Holes may disappear (death).

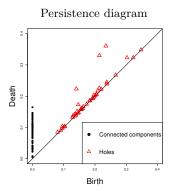
- \bullet Persistent homology recovers the tolopological information from a spatial point process $\mathbf{X}.$
- We construct a so called Delaunay complex filtration.
- The union of balls of radius r intersected with the Voronoi tessellation.



- r = 0, a point \sim a connected component.
- Balls intersect \sim connected components die.
- Holes may appear (birth).
- Holes may disappear (death).

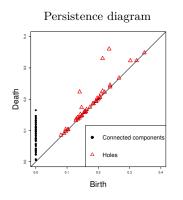
Persistent homology - Persistence diagram

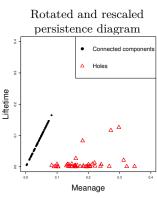
- A persistent diagram consists of points (b_i, d_i) representing as r varies a connected components (holes) appearing at $r = b_i$ (birth) and disappearing at $r = d_i$ (death),
- possibly with multiplicity c_i .



Persistent homology - Persistence diagram

- A persistent diagram consists of points (b_i, d_i) representing as r varies a connected components (holes) appearing at $r = b_i$ (birth) and disappearing at $r = d_i$ (death),
- possibly with multiplicity c_i .
- $(b_i, d_i) \leftrightarrow (m_i, l_i)$, where $m_i = \frac{b_i + d_i}{2}$ and $l_i = d_i b_i$.



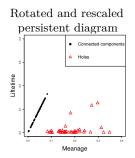


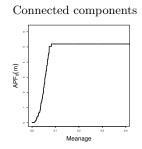
A new functional summary statistic

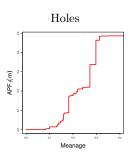
The accumulated persistence function (where k=0 if connected components are considered, k=1 if holes):

$$APF_k(m) = \sum_i c_i l_i 1(m_i \le m), \quad m \ge 0.$$

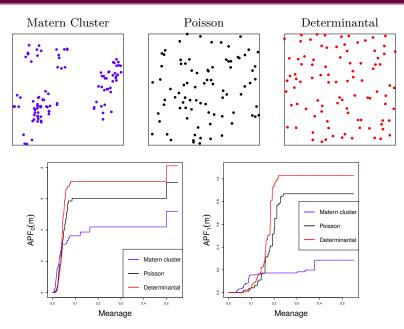
Example:







Inhibitive - Aggregative behaviour



Applications

- A single APF
 - \bullet Transfer confidence region from persistence diagram Fasy et~al.,~2014 and Chazal et~al.,~2014
 - Extreme rank envelope
- A sample of APFs
 - Functional boxplot
 - \bullet Confidence region for the mean of APFs
- Two or more samples of APFs
 - Two sample problem
 - Clustering
 - Supervised classification

Framework

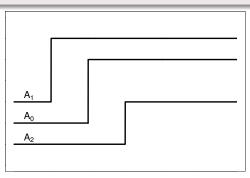
- ullet Given a realization of \mathbf{X}_0 ("the data") and a model for \mathbf{X}_0 : assess goodness of fit?
- Simulate r IID copies of \mathbf{X}_0 : $\mathbf{X}_1, \dots, \mathbf{X}_r$.
- NB: $(\mathbf{X}_0, \mathbf{X}_1, \dots, \mathbf{X}_r)$ is exchangeable.
- $A_0, A_1, \dots A_r$ the corresponding APFs.
- <u>Aim:</u> construct confidence regions for $A_0(m)$ with $0 \le m \le T$ (a given number) under \mathcal{H}_0 : (A_0, A_1, \ldots, A_r) is exchangeable.

$$A^k_{\mathrm{low}}(m) = \min_{i=0,\dots,r}{}^k A_i(m) \quad \text{and} \quad A^k_{\mathrm{upp}}(m) = \max_{i=0,\dots,r}{}^k A_i(m), \quad 0 \leq m \leq T.$$

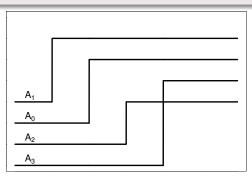
$$A_{\text{low}}^k(m) = \min_{i=0,\dots,r} {}^k A_i(m) \quad \text{and} \quad A_{\text{upp}}^k(m) = \max_{i=0,\dots,r} {}^k A_i(m), \quad 0 \le m \le T.$$

$$A_{\text{low}}^k(m) = \min_{i=0,\dots,r} {}^k A_i(m) \quad \text{and} \quad A_{\text{upp}}^k(m) = \max_{i=0,\dots,r} {}^k A_i(m), \quad 0 \le m \le T.$$

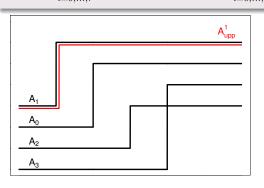
$$A^k_{\mathrm{low}}(m) = \min_{i=0,\dots,r}{}^k A_i(m) \quad \text{and} \quad A^k_{\mathrm{upp}}(m) = \max_{i=0,\dots,r}{}^k A_i(m), \quad 0 \leq m \leq T.$$



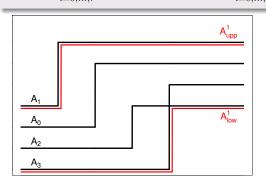
$$A^k_{\mathrm{low}}(m) = \min_{i=0,\dots,r}{}^k A_i(m) \quad \text{and} \quad A^k_{\mathrm{upp}}(m) = \max_{i=0,\dots,r}{}^k A_i(m), \quad 0 \leq m \leq T.$$



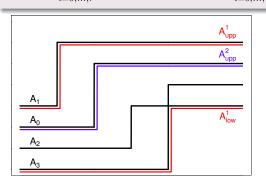
$$A_{\mathrm{low}}^k(m) = \min_{i=0,\dots,r}{}^k A_i(m) \quad \text{and} \quad A_{\mathrm{upp}}^k(m) = \max_{i=0,\dots,r}{}^k A_i(m), \quad 0 \leq m \leq T.$$



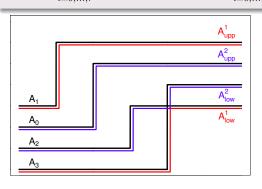
$$A^k_{\mathrm{low}}(m) = \min_{i=0,\dots,r}{}^k A_i(m) \quad \text{and} \quad A^k_{\mathrm{upp}}(m) = \max_{i=0,\dots,r}{}^k A_i(m), \quad 0 \leq m \leq T.$$



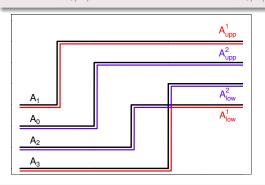
$$A^k_{\mathrm{low}}(m) = \min_{i=0,\dots,r}{}^k A_i(m) \quad \text{and} \quad A^k_{\mathrm{upp}}(m) = \max_{i=0,\dots,r}{}^k A_i(m), \quad 0 \leq m \leq T.$$



$$A_{\mathrm{low}}^k(m) = \min_{i=0,\dots,r}{}^k A_i(m) \quad \text{and} \quad A_{\mathrm{upp}}^k(m) = \max_{i=0,\dots,r}{}^k A_i(m), \quad 0 \leq m \leq T.$$

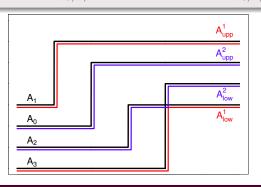


$$A_{\mathrm{low}}^k(m) = \min_{i=0,\dots,r} {}^k A_i(m) \quad \text{and} \quad A_{\mathrm{upp}}^k(m) = \max_{i=0,\dots,r} {}^k A_i(m), \quad 0 \leq m \leq T.$$



$$R_i = \max \left\{ k : A_{\text{low}}^k(m) \le A_i(m) \le A_{\text{upp}}^k(m), \text{ for all } m \in [0, T] \right\}.$$

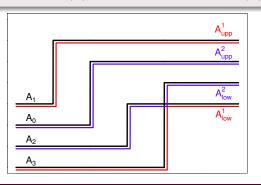
$$A_{\mathrm{low}}^k(m) = \min_{i=0,\dots,r} {}^k A_i(m) \quad \text{and} \quad A_{\mathrm{upp}}^k(m) = \max_{i=0,\dots,r} {}^k A_i(m), \quad 0 \le m \le T.$$



•
$$R_0 = 2$$

$$R_i = \max \left\{ k : A_{\text{low}}^k(m) \le A_i(m) \le A_{\text{upp}}^k(m), \text{ for all } m \in [0, T] \right\}.$$

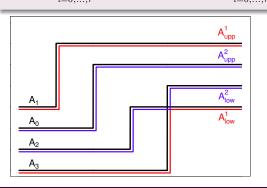
$$A_{\mathrm{low}}^k(m) = \min_{i=0,\dots,r} {}^k A_i(m) \quad \text{and} \quad A_{\mathrm{upp}}^k(m) = \max_{i=0,\dots,r} {}^k A_i(m), \quad 0 \leq m \leq T.$$



- $R_0 = 2$
- $R_1 = 1$

$$R_i = \max \left\{ k : A_{\text{low}}^k(m) \le A_i(m) \le A_{\text{upp}}^k(m), \text{ for all } m \in [0, T] \right\}.$$

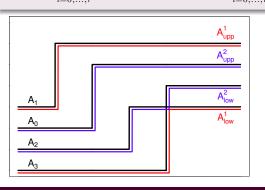
$$A_{\mathrm{low}}^k(m) = \min_{i=0,\dots,r} {}^k A_i(m) \quad \text{and} \quad A_{\mathrm{upp}}^k(m) = \max_{i=0,\dots,r} {}^k A_i(m), \quad 0 \leq m \leq T.$$



- $R_0 = 2$
- $R_1 = 1$
- $R_2 = 1$

$$R_i = \max \left\{ k : A_{\text{low}}^k(m) \le A_i(m) \le A_{\text{upp}}^k(m), \text{ for all } m \in [0, T] \right\}.$$

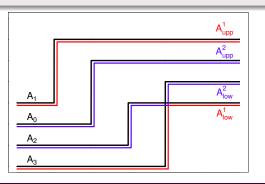
$$A_{\mathrm{low}}^k(m) = \min_{i=0,\dots,r} {}^k A_i(m) \quad \text{and} \quad A_{\mathrm{upp}}^k(m) = \max_{i=0,\dots,r} {}^k A_i(m), \quad 0 \leq m \leq T.$$



- $R_0 = 2$
- $R_1 = 1$
- $R_2 = 1$
- $R_3 = 1$

$$R_i = \max \left\{ k : A_{\text{low}}^k(m) \le A_i(m) \le A_{\text{upp}}^k(m), \text{ for all } m \in [0, T] \right\}.$$

$$A_{\text{low}}^k(m) = \min_{i=0,\dots,r} {}^k A_i(m) \quad \text{and} \quad A_{\text{upp}}^k(m) = \max_{i=0,\dots,r} {}^k A_i(m), \quad 0 \le m \le T.$$



- $R_0 = 2$
- $R_1 = 1$
- $R_2 = 1$
- $R_3 = 1$

The *i*-th extreme rank, i = 0, ..., r, of A_i

$$R_i = \max\left\{k: A_{\text{low}}^k(m) \le A_i(m) \le A_{\text{upp}}^k(m), \text{ for all } m \in [0, T]\right\}.$$

The larger R_i is, the "deeper" or "more central" A_i is among A_0, \ldots, A_r .

Extreme rank envelope

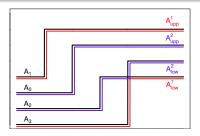
Proposition (Myllymäki et al., 2015)

Given $\alpha \in (0,1)$, define

$$k_{\alpha} = \max \left\{ k : \frac{1}{r+1} \sum_{i=0}^{r} 1(R_i < k) \le \alpha \right\}.$$

Under \mathcal{H}_0 , with at least probability greater or equal than $1-\alpha$,

$$A_{\text{low}}^{k_{\alpha}}(m) \le A_0(m) \le A_{\text{upp}}^{k_{\alpha}}(m)$$
 for all $m \in [0, T]$.



• \sim conservative extreme rank envelope test at level α .

Test for CSR

- Suppose \mathbf{X}_0 is modelled as a Poisson point process on $[0,1]^2$ with **known** intensity ρ : $\mathcal{P}(\rho,[0,1]^2)$.
- Simulate r = 2500 IID copies of $\mathcal{P}(\rho, [0, 1]^2)$.
- \bullet Compute extreme rank envelope test at level 5% when the true model for \mathbf{X}_0 is either:

CSR - Poisson process Inhibitive - DPP Aggregation Matérn cluster cell process

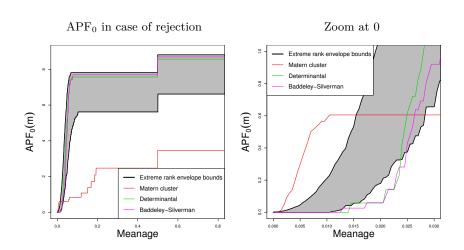
Test for CSR

Percentage of simulated point patterns rejected by the 95%-extreme rank envelope test.

	Poisson		Determinantal		Matérn cluster		Baddeley-Silverman	
	$\rho = 100$	$\rho=300$	$\rho = 100$	$\rho=300$	$\rho = 100$	$\rho=300$	$\rho = 100$	$\rho = 300$
APF_0	5	3.5	83.5	100	100	100	50.5	87.5
APF_1	5	4	14.5	46.5	100	100	52	94.5
K	3.2	2.8	98.8	100	100	100	51	48
F	2.2	1.8	31	57	99.8	100	58	100

- Decent detection for Baddeley-Silverman cell process.
- Good detection for inhibitive model but only when considered the connected components.
- Excellent detection for cluster model.
- The power increases with the number of points.

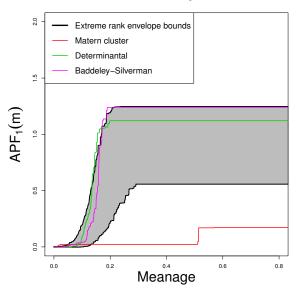
Extreme rank envelope, k = 0



Short lifetime features matters.

Extreme rank envelope, k = 1

APF₁ in case of rejection



Conclusions:

- We introduced a new functional summary statistics.
- We successfully use it in different situations.
- We focused on an extreme rank envelope test and the corresponding plot.
- This plot can be very informative for suggesting alternative models.

Perspectives:

Define new spatial point process models based on their persistence diagrams.

Thank you for your attention.