Flux Formulation

• Local weak formulation: on each $\kappa \in \mathcal{T}_h$, find $u|_{\kappa}$ such that

$$-\int_{\kappa} (\mathbf{b}\mathbf{u}) \cdot \nabla \mathbf{v} d\mathbf{x} + \int_{\partial \kappa} (\mathbf{b}\mathbf{u}^{+}) \cdot \mathbf{n}_{\kappa} \mathbf{v}^{+} d\mathbf{s} = \mathbf{0}.$$

Inter-element continuity and bcs weakly enforced:

$$-\int_{\kappa} (\mathbf{b}\mathbf{u}) \cdot \nabla \mathbf{v} d\mathbf{x} + \int_{\partial \kappa} \mathcal{H}(\mathbf{u}^{+}, \mathbf{u}^{-}, \mathbf{n}_{\kappa}) \mathbf{v}^{+} d\mathbf{s} = \int_{\kappa} \mathbf{f} \mathbf{v} d\mathbf{x}.$$

- $\mathcal{H}(\cdot, \cdot, \mathbf{n})$ is a numerical flux function.
- Sum over all elements $\kappa \in \mathcal{T}_h$ and restrict to the FEM space V_h :

DGFEM

Find $u_h \in V_h$ such that

$$\sum_{\kappa \in \mathcal{T}_h} \left\{ - \int_{\kappa} (\mathbf{b} \mathbf{u}_h) \cdot \nabla \mathbf{v}_h \mathrm{d}\mathbf{x} + \int_{\partial \kappa} \mathcal{H}(\mathbf{u}_h^+, \mathbf{u}_h^-, \mathbf{n}_\kappa) \mathbf{v}_h^+ \, \mathrm{d}\mathbf{s} \right\} = \sum_{\kappa \in \mathcal{T}_h} \left\{ \int_{\kappa} f \mathbf{v}_h \mathrm{d}\mathbf{x} \right\}$$

for all $v_h \in V_h$.

Flux Formulation

- Properties of the numerical flux function $\mathcal{H}(\cdot,\cdot,\cdot)$.
 - I. Consistency: for each κ in \mathcal{T}_h we have that

$$\mathcal{H}(\mathbf{v},\mathbf{v},\mathbf{n}_{\kappa})|_{\partial\kappa} = (\mathbf{b}\mathbf{v})\cdot\mathbf{n}_{\kappa} \quad \forall\kappa\in\mathcal{T}_{h}.$$

2. Conservation: given any two neighbouring elements κ and κ' from the finite element partition \mathcal{T}_h , at each point $\mathbf{x} \in \partial \kappa \cap \partial \kappa' \neq \emptyset$, noting that $\mathbf{n}_{\kappa'} = -\mathbf{n}_{\kappa}$, we have that

$$\mathcal{H}(\mathbf{v}, \mathbf{w}, \mathbf{n}_{\kappa}) = -\mathcal{H}(\mathbf{w}, \mathbf{v}, -\mathbf{n}_{\kappa}).$$

Choose the upwind numerical flux:

$$\mathcal{H}(u_h^+,u_h^-,\mathbf{n}_\kappa)|_{\partial\kappa}=\mathbf{b}\cdot\mathbf{n}_\kappa\lim_{s\to 0^+}u_h(x-s\mathbf{b})\quad\text{for }\kappa\in\mathcal{T}_h.$$

By convention, we set $u_h^-|_{\partial_-\kappa\cap\partial\Omega}=\mathfrak{g}$; thereby,

$$\mathcal{H}(\mathbf{u}_h^+, \mathbf{u}_h^-, \mathbf{n}_\kappa)|_{\partial_-\kappa \cap \partial\Omega} = \mathbf{b} \cdot \mathbf{n}_\kappa \, \mathsf{g} \quad \mathsf{for} \ \kappa \in \mathcal{T}_h.$$

- Note that both DGFEM formulations are equivalent (proof: exercise).
- Nonlinear Problems: Lax-Friedrichs flux, Roe's flux, Vijayasundaram flux, ...

Discontinuous Galerkin FEMs Second-order Elliptic PDEs

Poisson's Equation

Given $\Omega \subset \mathbb{R}^d$, $d \geq 1$, and $f \in L^2(\Omega)$, find u such that

$$-\Delta u = f$$
 in Ω , $u = 0$ on $\partial \Omega$.

DG Discretization:

- 1. Rewrite as a first-order system.
- 2. Derive an elemental weak formulation.
- 3. Introduce numerical flux functions \Rightarrow Flux Formulation.
- 4. Eliminate the auxiliary variables \Rightarrow Primal Formulation.

1. Rewrite as a first-order system:

$$s - \nabla u = 0, \quad -\nabla \cdot s = f.$$

2. Elemental weak formulation: find (s, u) such that

$$\int_{\kappa} \mathbf{s} \cdot \boldsymbol{\tau} d\mathbf{x} + \int_{\kappa} \mathbf{u} \nabla \cdot \boldsymbol{\tau} d\mathbf{x} - \int_{\partial \kappa} \mathbf{u} \boldsymbol{\tau} \cdot \mathbf{n}_{\kappa} d\mathbf{s} = \mathbf{0},$$

$$\int_{\kappa} \mathbf{s} \cdot \nabla \mathbf{v} d\mathbf{x} - \int_{\partial \kappa} \mathbf{s} \cdot \mathbf{n}_{\kappa} \mathbf{v} d\mathbf{s} = \int_{\kappa} \mathbf{f} \mathbf{v} d\mathbf{x}.$$

- Notation: ∇_h denotes the broken gradient operator, defined elementwise.
- Numerical flux functions:
 - $\hat{u} = \hat{u}(u_h)$,
 - $\hat{s} = \hat{s}(u_h, \nabla_h u_h)$

are approximations to u_h and $\nabla_h u_h$, respectively.

3. Flux Formulation: find $u_h \in V_h$ and $s_h \in \Sigma_h = [V_h]^d$ such that

$$\int_{\Omega} \mathbf{s}_h \cdot \boldsymbol{\tau}_h \mathrm{d}\mathbf{x} + \int_{\Omega} \mathbf{u}_h \nabla_h \cdot \boldsymbol{\tau}_h \mathrm{d}\mathbf{x} - \sum_{\kappa \in \mathcal{T}_h} \int_{\partial \kappa} \hat{\mathbf{u}} \boldsymbol{\tau}_h \cdot \mathbf{n}_\kappa \mathrm{d}\mathbf{s} = \mathbf{0}, \tag{1}$$

$$\int_{\Omega} \mathbf{s}_{h} \cdot \nabla \mathbf{v}_{h} d\mathbf{x} - \sum_{\kappa \in \mathcal{T}_{h}} \int_{\partial \kappa} \hat{\mathbf{s}} \cdot \mathbf{n}_{\kappa} \mathbf{v}_{h} d\mathbf{s} = \int_{\Omega} \mathbf{f} \mathbf{v}_{h} d\mathbf{x}$$
 (2)

for all $\tau_h \in \Sigma_h$, $v_h \in V_h$.

• Setting $\tau_h = \nabla_h v_h$ in (I) and integrating by parts gives

$$\int_{\Omega} s_h \cdot \nabla_h v_h \mathrm{d}x - \int_{\Omega} \nabla_h u_h \cdot \nabla_h v_h \mathrm{d}x + \sum_{\kappa \in \mathcal{T}_h} \int_{\partial \kappa} (u_h^+ - \hat{u}) \nabla_h v_h^+ \cdot n_\kappa \mathrm{d}s = 0.$$

4. Primal Formulation. Inserting into (2) gives: find $u_h \in V_h$ such that

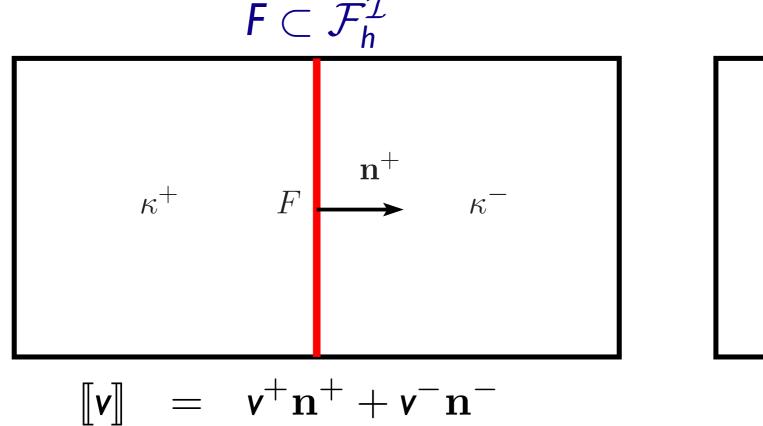
$$\int_{\Omega} \nabla_{h} u_{h} \cdot \nabla v_{h} dx - \sum_{\kappa \in \mathcal{T}_{h}} \int_{\partial \kappa} (u_{h}^{+} - \hat{u}) \nabla_{h} v_{h}^{+} \cdot n_{\kappa} ds$$

$$- \sum_{\kappa \in \mathcal{T}_{h}} \int_{\partial \kappa} \hat{s} \cdot n_{\kappa} v_{h}^{+} ds = \int_{\Omega} f v_{h} dx$$

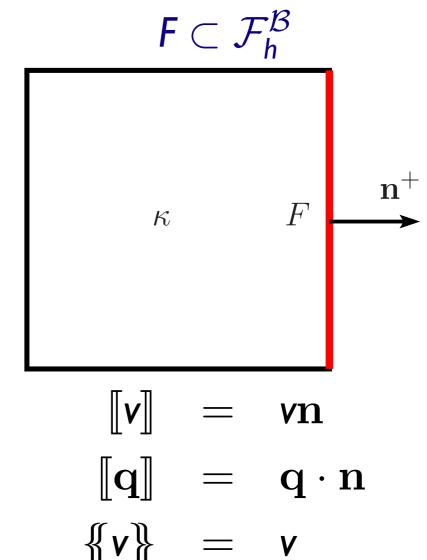
for all $v_h \in V_h$.

Notation

- Let $\mathcal{F}_h = \mathcal{F}_h^{\mathcal{I}} \cup \mathcal{F}_h^{\mathcal{B}}$ denote the set of all faces in the mesh \mathcal{T}_h .
- Notation:



$$[v] = v^{+}n^{+} + v^{-}n^{-}$$
 $[q] = q^{+} \cdot n^{+} + q^{-} \cdot n^{-}$
 $\{v\} = (v^{+} + v^{-})/2$



The following identity holds:

$$\sum_{\kappa \in \mathcal{T}_h} \int_{\partial \kappa} \mathbf{q}^+ \cdot \mathbf{n}^+ \, \mathbf{v}^+ \mathrm{d} \mathbf{s} = \sum_{F \in \mathcal{F}_h} \int_F \{\!\!\{ \mathbf{q} \}\!\!\} \cdot [\![\mathbf{v}]\!] \mathrm{d} \mathbf{s} + \sum_{F \in \mathcal{F}_h^{\mathcal{I}}} \int_F [\![\mathbf{q}]\!] \{\!\!\{ \mathbf{v} \}\!\!\} \mathrm{d} \mathbf{s}.$$