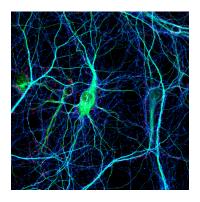
Second-order pseudo-stationary random fields and point processes on graphs and their edges

Jesper Møller (in collaboration with Ethan Anderes and Jakob G. Rasmussen)

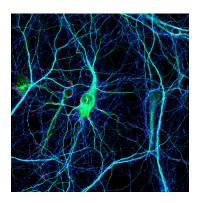
Aalborg University

Graph with edges = dendrite networks of neurons (green lines):



The dendrites carry information from other neurons to the cell body.

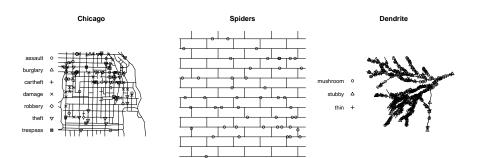
Graph with edges = dendrite networks of neurons (green lines):



The dendrites carry information from other neurons to the cell body.

Want to model the random field = diameter along this graph with edges.

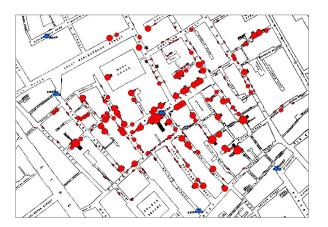
Point patterns on graphs with edges:



Is there

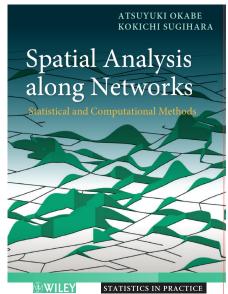
- clustering in street crimes?
- interaction between spider webs on mortar lines of a brick wall?
- interaction within and between different types of spines (small protusions)?

Snow's (1855) cholera map: Point pattern on a graph with edges = street network around the Broad Street pump:



Conclusion: cause of the victims' illness was contamination of the water from the Broad Street pump.

Textbook on ...



Some other research:

Cressie, Frey, Harch & Smith (2006). Spatial prediction on a river network. *Journal of Agricultural, Biological, and Environmental Statistics*.

Ver Hoef, Peterson & Theobald (2006). Spatial statistical models that use flow and stream distance. *Environmental and Ecological Statistics*.

Some other research:

Cressie, Frey, Harch & Smith (2006). Spatial prediction on a river network. *Journal of Agricultural, Biological, and Environmental Statistics*.

Ver Hoef, Peterson & Theobald (2006). Spatial statistical models that use flow and stream distance. *Environmental and Ecological Statistics*.

Ang, Baddeley & Nair (2012). Geometrically corrected second order analysis of events on a linear network, with applications to ecology and criminology. *Scandinavian Journal of Statistics*.

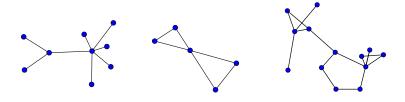
Baddeley, Jammalamadaka & Nair (2014). Multitype point process analysis of spines on the dendrite network of a neuron. *Journal of the Royal Statistical Society: Series C (Applied Statistics)*.

Existing literature

... considers only the case of a

linear network:

edges = straight line segments, only meeting at vertices.

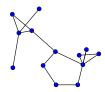


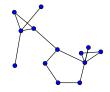
(Left and middle panels: linear networks. Right panel: *not* a linear network.)

A more general definition is needed

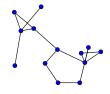
... in order to model

- crossing points (e.g. bridges/tunnels),
- multiple crossings (e.g. multiple roads),
- vertices disconnected from their adjacent edges (e.g. a ferry connecting two roads),
- curved or more general edges,
- different length measures on edges (e.g. different speeds on roads).



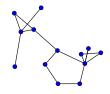


A graph with Euclidean edges \mathcal{G} is a triple $(\mathcal{V}, \{e_i : i \in I\}, \{\varphi_i : i \in I\})$ where I is a countable index set with $0 \notin I$ and



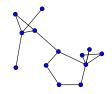
A graph with Euclidean edges \mathcal{G} is a triple $(\mathcal{V}, \{e_i : i \in I\}, \{\varphi_i : i \in I\})$ where I is a countable index set with $0 \notin I$ and

(a) each e_i is a *set* called an **edge**, with two associated vertices $\{u_i, v_i\} \subseteq \mathcal{V}$ where $u_i \neq v_i$ are called the **adjacent vertices**;



A graph with Euclidean edges \mathcal{G} is a triple $(\mathcal{V}, \{e_i : i \in I\}, \{\varphi_i : i \in I\})$ where I is a countable index set with $0 \notin I$ and

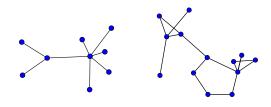
- (a) each e_i is a *set* called an **edge**, with two associated vertices $\{u_i, v_i\} \subseteq \mathcal{V}$ where $u_i \neq v_i$ are called the **adjacent vertices**;
- (b) $(\mathcal{V}, \{\{u_i, v_i\} : i \in I\})$ is a connected graph;



A graph with Euclidean edges \mathcal{G} is a triple $(\mathcal{V}, \{e_i : i \in I\}, \{\varphi_i : i \in I\})$ where I is a countable index set with $0 \notin I$ and

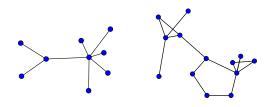
- (a) each e_i is a *set* called an **edge**, with two associated vertices $\{u_i, v_i\} \subseteq \mathcal{V}$ where $u_i \neq v_i$ are called the **adjacent vertices**;
- (b) $(\mathcal{V}, \{\{u_i, v_i\} : i \in I\})$ is a connected graph;
- (c) $\varphi_i : e_i \mapsto (a_i, b_i)$ is a bijection called an **edge-coordinate**. ("Constant speed": $\varphi_i^{-1} = \text{natural parametrization of } e_i$.)

$L = \text{index set for random fields/space for point processes on } \mathcal{G}$:



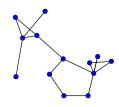
If no overlap (left panel): $L = \mathcal{V} \cup \bigcup_{i \in I} e_i$.

$L = \text{index set for random fields/space for point processes on } \mathcal{G}$:



If no overlap (left panel): $L = \mathcal{V} \cup \bigcup_{i \in I} e_i$.

If overlap (right panel): $L = (\{0\} \times \mathcal{V}) \cup \bigcup_{i \in I} (\{i\} \times e_i)$.



Geodesic distance:

 $d_{\mathcal{G}}(u,v)=$ infimum of length of paths in \mathcal{G} between $u,v\in L$ (where "length" is induced by edge-coordinates and usual length on the intervals (a_i,b_i) — e.g. $d_{\mathcal{G}}(u,v)$ could be shortest time when driving from u to v with different speed limits).

How do we construct covariance functions of the form

$$c(u,v)=c_0(d_{\mathcal{G}}(u,v))$$

for $u, v \in L$? Say then that c is **pseudo-stationary**.

How do we construct covariance functions of the form

$$c(u,v)=c_0(d_{\mathcal{G}}(u,v))$$

for $u, v \in L$? Say then that c is **pseudo-stationary**.

• Study **GRFs** $Z = \{Z(u) : u \in L\}$ with a **pseudo-stationary** covariance function.

How do we construct covariance functions of the form

$$c(u,v)=c_0(d_{\mathcal{G}}(u,v))$$

for $u, v \in L$? Say then that c is **pseudo-stationary**.

• Study **GRFs** $Z = \{Z(u) : u \in L\}$ with a **pseudo-stationary** covariance function.

How do we construct covariance functions of the form

$$c(u,v)=c_0(d_{\mathcal{G}}(u,v))$$

for $u, v \in L$? Say then that c is **pseudo-stationary**.

- Study GRFs $Z = \{Z(u) : u \in L\}$ with a pseudo-stationary covariance function.
- How do we construct point processes on L with pair correlation function of the form

$$g(u, v) = g_0(d_{\mathcal{G}}(u, v))$$

for $u, v \in L$? (Pseudo-stationarity).

How do we construct covariance functions of the form

$$c(u,v)=c_0(d_{\mathcal{G}}(u,v))$$

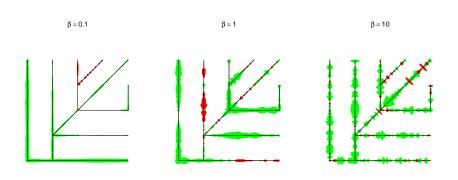
for $u, v \in L$? Say then that c is **pseudo-stationary**.

- Study GRFs $Z = \{Z(u) : u \in L\}$ with a pseudo-stationary covariance function.
- How do we construct point processes on L with pair correlation function of the form

$$g(u, v) = g_0(d_{\mathcal{G}}(u, v))$$

for $u, v \in L$? (Pseudo-stationarity).

PART 1: PSEUDO-STATIONARY COVARIANCE FUNCTIONS AND RANDOM FIELDS



Definition 2:

The class of functions

$$t\mapsto \exp(-\beta t), \quad t\geq 0,$$

for $\beta>0$ is the class of **positive definite exponential functions** (PDEFs)

Definition 2:

The class of functions

$$t\mapsto \exp(-\beta t), \quad t\geq 0,$$

for $\beta > 0$ is the class of **positive definite exponential functions** (PDEFs)

• A graph with Euclidean edges G is said to **support the PDEFs** if for any $\beta > 0$,

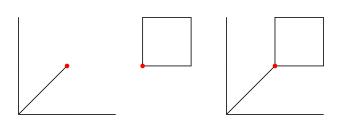
$$c(u,v) = \exp(-\beta d_{\mathcal{G}}(u,v))$$

is positive semi-definite for $u, v \in L$.

Definition 3:

Suppose $\mathcal{G}_1 = (\{\mathcal{V}_1, \{e_i : i \in I_1\}, \{\varphi_i : i \in I_1\}) \text{ and } \mathcal{G}_2 = (\{\mathcal{V}_2, \{e_i : i \in I_2\}, \{\varphi_i : i \in I_2\}) \text{ have only one vertex } v_0 \text{ in common, but no common edges, and disjoint index sets } I_1 \text{ and } I_2.$

The **1-sum** of \mathcal{G}_1 and \mathcal{G}_2 is the graph with Euclidean edges given by $\mathcal{G} = (\mathcal{V}_1 \cup \mathcal{V}_2, \{e_i : i \in I_1 \cup I_2\}, \{\varphi_i : i \in I_1 \cup I_2\}).$



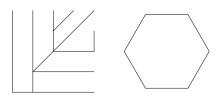
Graphs with Euclidean edges supporting the PDEFs:

Theorem 1. If $\mathcal{G}_1, \mathcal{G}_2, \ldots$ support the PDEFs, then the 1-sum of $\mathcal{G}_1, \mathcal{G}_2, \ldots$ supports the PDEFs. In fact $\sigma^2 \exp(-\beta d_{\mathcal{G}}(u, v))$ is (strictly) positive definite for all $\beta, \sigma^2 > 0$.

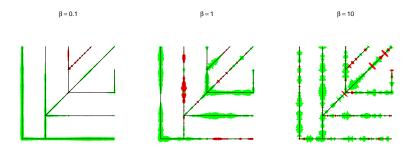
Graphs with Euclidean edges supporting the PDEFs:

Theorem 1. If $\mathcal{G}_1, \mathcal{G}_2, \ldots$ support the PDEFs, then the 1-sum of $\mathcal{G}_1, \mathcal{G}_2, \ldots$ supports the PDEFs. In fact $\sigma^2 \exp(-\beta d_{\mathcal{G}}(u, v))$ is (strictly) positive definite for all $\beta, \sigma^2 > 0$.

Theorem 2. Cycles and trees support the PDEFs, and so do countable 1-sums of these.



Sim. of GRF on \mathcal{G} with $c(u,v) = \sigma^2 \exp(-\beta d_{\mathcal{G}}(u,v))$



Forbidden subgraph:

Theorem 3. Suppose G is a graph with Euclidean edges that has three paths which have common endpoints but are otherwise pairwise disjoint.

Forbidden subgraph:

Theorem 3. Suppose G is a graph with Euclidean edges that has three paths which have common endpoints but are otherwise pairwise disjoint.

Then there exists a $\beta > 0$ s.t.

$$c(u, v) = \exp(-\beta d_{\mathcal{G}}(u, v)), \quad u, v \in L,$$

is not positive semi-definite.

Completely monotonic covariance functions:

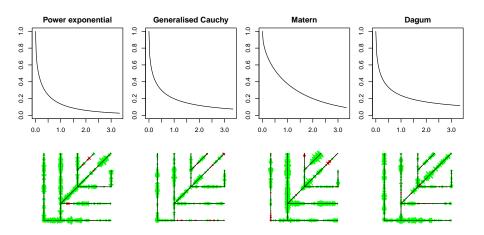
 $c_0: [0,\infty) \mapsto [0,\infty)$ is **completely monotonic** if it is continuous and $(-1)^k c_0^{(k)}(t) \ge 0$ for all $t \in (0,\infty)$ and k = 1,2,...

Completely monotonic covariance functions:

 $c_0: [0,\infty) \mapsto [0,\infty)$ is **completely monotonic** if it is continuous and $(-1)^k c_0^{(k)}(t) \ge 0$ for all $t \in (0,\infty)$ and $k=1,2,\ldots$

Theorem 4. If \mathcal{G} supports the PDEFs and c_0 is completely monotonic and non-constant, then $c(u, v) = c_0(d_{\mathcal{G}}(u, v))$ is (strictly) pos. def.

Simulations using completely monotonic covariance fcts:



Examples of completely monotonic covariance functions:

Theorem 5. Suppose \mathcal{G} supports the PDEFs. Then for σ^2 , $\beta > 0$, we have parametric families of pos. def. cov. fcts. $c(u, v) = c_0(d_{\mathcal{G}}(u, v))$:

• Power exponential covariance function:

$$c_0(s) = \sigma^2 \exp(-\beta s^{\alpha}), \quad \alpha \in (0, 1].$$

Generalized Cauchy covariance function:

$$c_0(s) = \sigma^2 (\beta s^{\alpha} + 1)^{-\xi/\alpha}, \quad \alpha \in (0, 1], \ \xi > 0.$$

• The Matérn covariance function:

$$c_0(s) = \sigma^2 \frac{\left(\beta s\right)^{lpha} \mathcal{K}_{lpha} \left(\beta s\right)}{\Gamma(lpha) 2^{lpha-1}}, \quad lpha \in (0,1/2].$$

• The Dagum covariance function:

$$c_0(s) = \sigma^2 \left[1 - \left(\frac{\beta s^{\alpha}}{1 + \beta s^{\alpha}} \right)^{\xi/\alpha} \right], \quad \alpha, \xi \in (0, 1].$$

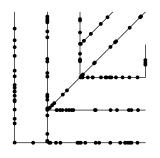
Forbidden covariance properties:

Forbidden covariance properties:

Theorem 6. For any of the functions c(u, v) given in Theorem 5 but with $\alpha > 0$ outside the parameter range given in Theorem 5,

- there exists a graph with Euclidean edges \mathcal{G} which supports the PDEFs (and is not necessarily a cycle),
- but c(u, v) is **not** a covariance function.

PART 2: PSEUDO-STATIONARY POINT PROCESSES



• A (simple locally finite) point process on \mathcal{G} is a random set $X \subset L$ s.t. $X \cap e_i$ is a.s. finite for all $i \in I$.

- A (simple locally finite) point process on \mathcal{G} is a random set $X \subset L$ s.t. $X \cap e_i$ is a.s. finite for all $i \in I$.
- Let $\lambda_{\mathcal{G}} =$ Lebesgue measure on L (obtained via the edge-coordinates).

- A (simple locally finite) point process on \mathcal{G} is a random set $X \subset L$ s.t. $X \cap e_i$ is a.s. finite for all $i \in I$.
- Let $\lambda_{\mathcal{G}} =$ Lebesgue measure on L (obtained via the edge-coordinates).
- X has n^{th} order joint intensity function $\rho^{(n)}$ if for small pairwise disjoint sets $B_1, \ldots, B_n \subset L$ and $u_1 \in B_1, \ldots, u_n \in B_n$,

$$P(X \text{ has a point in each of } B_1, \dots, B_n) \approx \rho^{(n)}(u_1, \dots, u_n) \lambda_{\mathcal{G}}(B_1) \cdots \lambda_{\mathcal{G}}(B_n).$$

- A (simple locally finite) point process on \mathcal{G} is a random set $X \subset L$ s.t. $X \cap e_i$ is a.s. finite for all $i \in I$.
- Let $\lambda_{\mathcal{G}} =$ Lebesgue measure on L (obtained via the edge-coordinates).
- X has n^{th} order joint intensity function $\rho^{(n)}$ if for small pairwise disjoint sets $B_1, \ldots, B_n \subset L$ and $u_1 \in B_1, \ldots, u_n \in B_n$,

$$P(X \text{ has a point in each of } B_1, \ldots, B_n) \approx \rho^{(n)}(u_1, \ldots, u_n) \lambda_{\mathcal{G}}(B_1) \cdots \lambda_{\mathcal{G}}(B_n).$$

• Intensity function: $\rho(u) = \rho^{(1)}(u)$.

- A (simple locally finite) point process on \mathcal{G} is a random set $X \subset L$ s.t. $X \cap e_i$ is a.s. finite for all $i \in I$.
- Let $\lambda_{\mathcal{G}} =$ Lebesgue measure on L (obtained via the edge-coordinates).
- X has n^{th} order joint intensity function $\rho^{(n)}$ if for small pairwise disjoint sets $B_1, \ldots, B_n \subset L$ and $u_1 \in B_1, \ldots, u_n \in B_n$,

$$P(X \text{ has a point in each of } B_1, \dots, B_n) \approx \rho^{(n)}(u_1, \dots, u_n) \lambda_{\mathcal{G}}(B_1) \cdots \lambda_{\mathcal{G}}(B_n).$$

- Intensity function: $\rho(u) = \rho^{(1)}(u)$.
- Pair correlation function: $g(u, v) = \rho^{(2)}(u, v)/[\rho(u)\rho(v)].$

• X is (second-order intensity-reweighted) pseudo-stationary if $g(u, v) = g_0(d_{\mathcal{G}}(u, v))$.

• X is (second-order intensity-reweighted) pseudo-stationary if $g(u,v)=g_0(d_{\mathcal{G}}(u,v))$. Then the (inhomogeneous) K-function is

$$K(r) = \int_0^r g_0(t) dt, \quad r \geq 0.$$

• X is (second-order intensity-reweighted) pseudo-stationary if $g(u,v)=g_0(d_{\mathcal{G}}(u,v))$. Then the (inhomogeneous) K-function is

$$K(r) = \int_0^r g_0(t) dt, \quad r \geq 0.$$

• If $\rho(u)$ is locally integrable, then for $\rho(u) > 0$ there exists a point process $X_u^!$ on $\mathcal G$ which follows the **reduced Palm distribution at** u, i.e.

$$X_u^! \sim$$
 "cond. dist. of $X \setminus \{u\}$ given $u \in X$ ".

• X is (second-order intensity-reweighted) pseudo-stationary if $g(u,v)=g_0(d_{\mathcal{G}}(u,v))$. Then the (inhomogeneous) K-function is

$$K(r) = \int_0^r g_0(t) dt, \quad r \geq 0.$$

• If $\rho(u)$ is locally integrable, then for $\rho(u) > 0$ there exists a point process $X_u^!$ on $\mathcal G$ which follows the **reduced Palm distribution at** u, i.e.

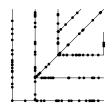
$$X_u^! \sim$$
 "cond. dist. of $X \setminus \{u\}$ given $u \in X$ ".

If $\rho(u) \equiv \rho > 0$ and $g(u, v) = g_0(d_{\mathcal{G}}(u, v))$, then for any $u \in L$,

$$\rho K(r) = \mathbb{E} \# \{ v \in X_u^! : d_{\mathcal{G}}(u, v) \le r \}.$$

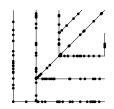
Poisson processes:

- X is a **Poisson process** on $\mathcal G$ with (locally integrable) intensity function $\rho: L \mapsto [0,\infty)$, if for any $B \subseteq L$ with $\mu(B) := \int_B \rho(u) \, \mathrm{d}\lambda_{\mathcal G}(u) < \infty$,
 - $\#(X \cap B) \sim \operatorname{Poisson}(\mu(B))$,
 - cond. on $\#(X \cap B)$, the points in $X \cap B$ are iid with density $\propto \rho$.



Poisson processes:

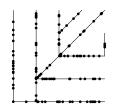
- X is a **Poisson process** on $\mathcal G$ with (locally integrable) intensity function $\rho: L \mapsto [0,\infty)$, if for any $B \subseteq L$ with $\mu(B) := \int_B \rho(u) \, \mathrm{d}\lambda_{\mathcal G}(u) < \infty$,
 - $\#(X \cap B) \sim \operatorname{Poisson}(\mu(B))$,
 - cond. on $\#(X \cap B)$, the points in $X \cap B$ are iid with density $\propto \rho$.



• Then $\rho^{(n)}(u_1,\ldots,u_n)=\rho(u_1)\cdots\rho(u_n)$, so g(u,v)=1, i.e. X is pseudo-stationary and K(r)=r.

Poisson processes:

- X is a **Poisson process** on $\mathcal G$ with (locally integrable) intensity function $\rho: L \mapsto [0,\infty)$, if for any $B \subseteq L$ with $\mu(B) := \int_B \rho(u) \, \mathrm{d}\lambda_{\mathcal G}(u) < \infty$,
 - $\#(X \cap B) \sim \operatorname{Poisson}(\mu(B))$,
 - cond. on $\#(X \cap B)$, the points in $X \cap B$ are iid with density $\propto \rho$.



• Then $\rho^{(n)}(u_1,\ldots,u_n)=\rho(u_1)\cdots\rho(u_n)$, so g(u,v)=1, i.e. X is pseudo-stationary and K(r)=r. Moreover, $X_u^!\sim X$ whenever $\rho(u)>0$.

• X is a LGCP with underlying GRF Z if X|Z is a Poisson process on \mathcal{G} with locally integrable intensity function $\exp(Z(u))$ for $u \in L$.

- X is a LGCP with underlying GRF Z if X|Z is a Poisson process on \mathcal{G} with locally integrable intensity function $\exp(Z(u))$ for $u \in L$.
- Let m(u) = EZ(u) and c(u, v) = cov(Z(u), Z(v)).

- X is a LGCP with underlying GRF Z if X|Z is a Poisson process on \mathcal{G} with locally integrable intensity function $\exp(Z(u))$ for $u \in L$.
- Let m(u) = EZ(u) and c(u, v) = cov(Z(u), Z(v)). Local integrability of exp(Z(u)) is satisfied a.s. if $c(u, v) = c_0(d_{\mathcal{G}}(u, v))$ and c_0 is completely monotonic.

- X is a LGCP with underlying GRF Z if X|Z is a Poisson process on \mathcal{G} with locally integrable intensity function $\exp(Z(u))$ for $u \in L$.
- Let m(u) = EZ(u) and c(u, v) = cov(Z(u), Z(v)). Local integrability of exp(Z(u)) is satisfied a.s. if $c(u, v) = c_0(d_{\mathcal{G}}(u, v))$ and c_0 is completely monotonic.
- $\rho(u) = \exp(m(u) + c(u, u)/2)$, $g(u, v) = \exp(c(u, v))$,

$$\rho^{(n)}(u_1,\ldots,u_n) = \prod_{i=1}^n \rho(u_i) \prod_{i < i} g(u_i,u_i).$$

- X is a LGCP with underlying GRF Z if X|Z is a Poisson process on \mathcal{G} with locally integrable intensity function $\exp(Z(u))$ for $u \in L$.
- Let m(u) = EZ(u) and c(u, v) = cov(Z(u), Z(v)). Local integrability of exp(Z(u)) is satisfied a.s. if $c(u, v) = c_0(d_{\mathcal{G}}(u, v))$ and c_0 is completely monotonic.
- $\rho(u) = \exp(m(u) + c(u, u)/2), g(u, v) = \exp(c(u, v)),$

$$\rho^{(n)}(u_1,\ldots,u_n)=\prod_{i=1}^n\rho(u_i)\prod_{i< j}g(u_i,u_j).$$

So X pseudo-stationary iff c is pseudo-stationary.

- X is a LGCP with underlying GRF Z if X|Z is a Poisson process on \mathcal{G} with locally integrable intensity function $\exp(Z(u))$ for $u \in L$.
- Let m(u) = EZ(u) and c(u, v) = cov(Z(u), Z(v)). Local integrability of exp(Z(u)) is satisfied a.s. if $c(u, v) = c_0(d_{\mathcal{G}}(u, v))$ and c_0 is completely monotonic.
- $\rho(u) = \exp(m(u) + c(u, u)/2), g(u, v) = \exp(c(u, v)),$

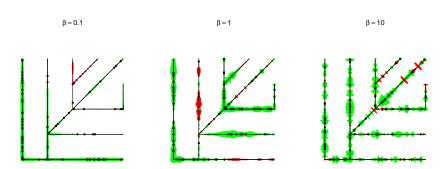
$$\rho^{(n)}(u_1,\ldots,u_n) = \prod_{i=1}^n \rho(u_i) \prod_{i < i} g(u_i,u_i).$$

So X pseudo-stationary iff c is pseudo-stationary.

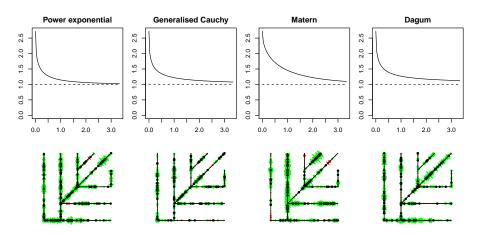
• $X_u^!$ is a LGCP with underlying GRF having mean function $m_u(v) = m(v) + c(u, v)$ and covariance function c.

Simulations of LGCPs using exponential covariance fcts:

Given a realisation of the GRF Z on \mathcal{G} , we simulate a Poisson process with intensity function $\exp(Z)$ to obtain a simulation of the LGCP X on \mathcal{G} .



Simulations of LGCPs using other covariance fcts:



 We now have a range of pseudo-stationary covariance functions and corresponding GRFs on graphs with Euclidean edges; and LGCPs for modelling clustered point patterns.

- We now have a range of pseudo-stationary covariance functions and corresponding GRFs on graphs with Euclidean edges; and LGCPs for modelling clustered point patterns.
- However, they only work on trees, cycles and countable 1-sums of these.

- We now have a range of pseudo-stationary covariance functions and corresponding GRFs on graphs with Euclidean edges; and LGCPs for modelling clustered point patterns.
- However, they only work on trees, cycles and countable 1-sums of these.
- For other graphs even something simple like the exponential function is not (necessarily) a covariance function.

- We now have a range of pseudo-stationary covariance functions and corresponding GRFs on graphs with Euclidean edges; and LGCPs for modelling clustered point patterns.
- However, they only work on trees, cycles and countable 1-sums of these.
- For other graphs even something simple like the exponential function is not (necessarily) a covariance function.
- The covariance functions we have established are all completely monotonic, so they cannot e.g. be negative.

 Construct pseudo-stationary cov. fcts. from non-completely monotonic fcts.

- Construct pseudo-stationary cov. fcts. from non-completely monotonic fcts.
- Explain why it is hard to construct pseudo-stationary shot-noise random fields, shot-noise Cox processes, and Gibbs point processes.

- Construct pseudo-stationary cov. fcts. from non-completely monotonic fcts.
- Explain why it is hard to construct pseudo-stationary shot-noise random fields, shot-noise Cox processes, and Gibbs point processes.
- Study pseudo-stationary weighted determinantal and permanental point processes.

- Construct pseudo-stationary cov. fcts. from non-completely monotonic fcts.
- Explain why it is hard to construct pseudo-stationary shot-noise random fields, shot-noise Cox processes, and Gibbs point processes.
- Study pseudo-stationary weighted determinantal and permanental point processes.
- Analyze data.

- Construct pseudo-stationary cov. fcts. from non-completely monotonic fcts.
- Explain why it is hard to construct pseudo-stationary shot-noise random fields, shot-noise Cox processes, and Gibbs point processes.
- Study pseudo-stationary weighted determinantal and permanental point processes.
- Analyze data.

THANK YOU!

