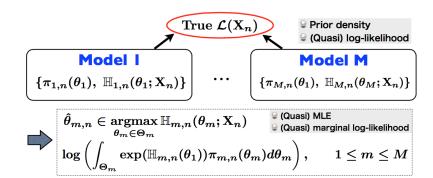
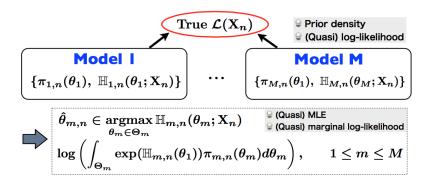
On Schwarz type model comparison

Shoichi Eguchi Hiroki Masuda

Kyushu University¹


Dynstoch 2016 Rennes, June 8–10

- Preliminaries and objective
- QBIC: extended Schwarz's reach
- 3 Examples and simulations
 - Adaptive model-selection consistency in multi-scaling case
- Summary

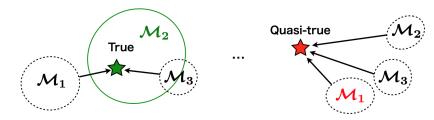

¹Supported by JST CREST.

- Preliminaries and objective
- 2 QBIC: extended Schwarz's reach
- Examples and simulations
 - Adaptive model-selection consistency in multi-scaling case
- 4 Summary

BIC: Classical Schwarz's model comparison

BIC: Classical Schwarz's model comparison

G. Schwarz (1978): Minimizing " $-2 \times$ (Marginal log-LF)" approximately


$$-2\log\left(\int_{\Theta_m}e^{\mathbb{H}_{m,n}(\theta)}\pi_{m,n}(\theta)d\theta\right)\approx\underbrace{-2\mathbb{H}_{m,n}(\hat{\theta}_{m,n})+p_m\log n}_{=:\mathsf{BIC}_n^{(m)}}+O(1)$$

• Many variants and extensions of BIC, e.g. Cavanaugh and Neath (1999)

Hiroki Masuda

Schwarz type model comparison

Motivation: Want to provide a BIC-like statistics

- ullet Quasi-MLE $\hat{ heta}_n$ for intractable LF and/or under misspecification
- When $\mathcal{L}(\hat{\theta}_n)$ is approximately mixed-normally distributed? e.g. Volatility estimation of Itô semimartingales
- When the components of $\hat{\theta}_n$ converge at different rates? e.g. Ergodic diffusions and Lévy processes, observed at high frequency

Objective: a quasi-Bayes model $(\pi_n(\theta), \mathbb{H}_n(\theta))_{\theta \in \Theta}$

- Prior density $\pi_n(\theta)$, $\theta \in \Theta \subset \mathbb{R}^p$
- Quasi log-LF \mathbb{H}_n : $\Omega \times \Theta \to \mathbb{R}$, Quasi-MLE $\hat{\theta}_n \in \operatorname{argmax} \mathbb{H}_n$
 - Locally asymptotically quadratic (LAQ)

$$egin{aligned} \mathbb{H}_n(heta_0+A_n(heta_0)u)-\mathbb{H}_n(heta_0)&=\Delta_n[u]-rac{1}{2}\Gamma_0[u,u]+r_n(u),\ A_n(heta)&=\mathrm{diag}\left\{a_{1n}(heta)I_{p_1},\ldots,a_{Kn}(heta)I_{p_K}
ight\},\quad a_{in}(heta)& o 0 \end{aligned}$$

Objective: a quasi-Bayes model $(\pi_n(\theta), \mathbb{H}_n(\theta))_{\theta \in \Theta}$

- ullet Prior density $\pi_n(heta)$, $heta \in \Theta \subset \mathbb{R}^p$
- ullet Quasi log-LF \mathbb{H}_n : $\Omega imes \Theta o \mathbb{R}$, Quasi-MLE $\hat{ heta}_n \in rgmax \mathbb{H}_n$
 - Locally asymptotically quadratic (LAQ)

$$egin{aligned} \mathbb{H}_n(heta_0+A_n(heta_0)u)-\mathbb{H}_n(heta_0)&=\Delta_n[u]-rac{1}{2}\Gamma_0[u,u]+r_n(u),\ A_n(heta)&=\mathrm{diag}\left\{a_{1n}(heta)I_{p_1},\ldots,a_{Kn}(heta)I_{p_K}
ight\},\quad a_{in}(heta)& o 0 \end{aligned}$$

Extension of Schwarz's BIC reach

$$-2\log\left\{\int_{\Theta}\expig(\mathbb{H}_n(heta)ig)\pi(heta)d heta
ight\}\stackrel{!}{pprox}-2\mathbb{H}_n(\hat{ heta}_n)+(\mathsf{Regularization})$$

- Unified approach to approximate the marginal quasi-likelihood
- Adaptive model-selection consistency w.r.t. quasi-true model

- 2 QBIC: extended Schwarz's reach
- - Adaptive model-selection consistency in multi-scaling case

Assumptions

ullet Quasi observed information matrix $\Gamma_n(heta) := -A_n \partial_{ heta}^2 \mathbb{H}_n(heta) A_n$

[A1]
$$\mathbb{H}_n \in C^3(\Theta)$$
 a.s., $\Gamma_n(\theta_0) \stackrel{p}{\to} \Gamma_0 > 0$ a.s., and for each $q > 0$,
$$\sup_n E\bigg(|A_n \partial_\theta \mathbb{H}_n(\theta_0)|^q + \sup_\theta |\Gamma_n(\theta)|^q + \sup_\theta |\partial_\theta \Gamma_n(\theta)|^q\bigg) < \infty$$

$$\text{[A2]} \sup_{n,\theta} \pi_n(\theta) \vee \pi_n^{-1}(\theta) < \infty \text{, and } \forall M>0, \ \sup_{|u| \leq M} |\pi_n(\theta_0 + A_n u) - \pi_n(\theta_0)| \to 0$$

[A3]
$$A_n^{-1}(\hat{\theta}_n-\theta_0)$$
 is $L^r(P)$ -bounded for some $r>3$

$$\text{[A4] } \forall q>0, \ \limsup_n E\bigg(\sup_{\theta} \lambda_{\min}^{-q}\left(\Gamma_n(\theta)\right)\bigg)<\infty$$

$$\text{[A5]}\ \limsup_n E\bigg\{\bigg(\int e^{\mathbb{H}_n(\theta_0+A_nu)-\mathbb{H}_n(\theta_0)}du\bigg)^\delta\bigg\}<\infty\ \text{for some}\ \delta>0$$

- Could be much weakened for the "stochastic expansion"
- "[A1] + [A4] plus alpha" ⇒ [A3] (Yoshida (2011))

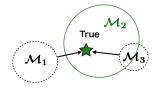
Quasi-Bayesian information criterion (QBIC)

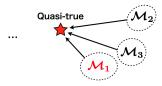
Theorem (Approximation of the expected marginal quasi log-LF)

$$\begin{split} E\bigg(-2\log\int_{\Theta}\exp\big(\mathbb{H}_{n}(\theta)\big)\pi(\theta)d\theta\bigg) \\ &= E\left(-2\mathbb{H}_{n}(\hat{\theta}_{n}) + \log\big| - \partial_{\theta}^{2}\mathbb{H}_{n}(\hat{\theta}_{n})\big|\right) \\ &- \underbrace{E\left(2\log\pi_{n}(\hat{\theta}_{n}) + p\log(2\pi)\right)}_{=O(1)} + o(1) \end{split}$$

Quasi-Bayesian information criterion (QBIC)

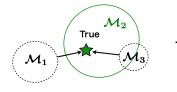
Theorem (Approximation of the expected marginal quasi log-LF)

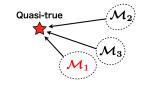

$$\begin{split} E\Big(-2\log\int_{\Theta}\exp\big(\mathbb{H}_n(\theta)\big)\pi(\theta)d\theta\Big) \\ &= E\left(-2\mathbb{H}_n(\hat{\theta}_n) + \log\big| - \partial_{\theta}^2\mathbb{H}_n(\hat{\theta}_n)\big|\right) \\ &- \underbrace{E\left(2\log\pi_n(\hat{\theta}_n) + p\log(2\pi)\right)}_{=O(1)} + o(1) \end{split}$$


Definition (QBIC: an extended Schwarz's criterion)

$$egin{aligned} \hat{\mathcal{S}}_n &:= -2\mathbb{H}_n(\hat{ heta}_n) + \logig| - \partial_{ heta}^2\mathbb{H}_n(\hat{ heta}_n)ig| \ &= -2\mathbb{H}_n(\hat{ heta}_n) + \sum_{k=1}^K p_k \logig(a_{kn}(\hat{ heta}_n)^{-2}ig) + o_E(1) \end{aligned}$$

Approximate unbiased estimator of the relative Kullback-Leibler divergence


 $\bullet \mathsf{KL}_{m,n} := E\{\log g_n^{\mathsf{True}}(\mathbf{X}_n)\} - E\{\log f_{m,n}(\mathbf{X}_n)\}, \quad 1 \le m \le M$



Approximate unbiased estimator of the relative Kullback-Leibler divergence

 $\bullet \mathsf{KL}_{m,n} := E\{\log g_n^{\mathsf{True}}(\mathbf{X}_n)\} - E\{\log f_{m,n}(\mathbf{X}_n)\}, \quad 1 \le m \le M$

$$\bullet \ \mathsf{KL}_{m,n} - \mathsf{KL}_{l,n} = E\bigg(\frac{1}{2}(\hat{\mathcal{S}}_{m,n}^\sharp - \hat{\mathcal{S}}_{k,n}^\sharp)\bigg) + o(1), \quad 1 \leq m, l \leq M$$

Equivalently, approximation of the expected log-Bayes factor

- QBIC: extended Schwarz's reach
- Examples and simulations
 - Adaptive model-selection consistency in multi-scaling case

(1) QBIC for estimating volatility of continuous process

$$dY_t = \exp\Big(rac{1}{2}\langle X_t, heta
angle\Big)dw_t, \qquad X_t = (X_{1,t}, \dots, X_{p,t})$$

- Data $(X_{t_j}, Y_{t_j})_{j=0}^n$, $t_j := jT/n$
- $\bullet \text{ e.g. } \sup_{t,\omega} |X_t(\omega)| < \infty, \ P \bigg\{ \lambda_{\min} \bigg(\frac{1}{T} \int_0^T X_t^{\bigotimes 2} dt \bigg) \leq r^{-1} \bigg\} \lesssim r^{-L}$
- Gaussian QLF, (Genon-Catalot and Jacod (1993), Uchida and Yoshida (2013)):

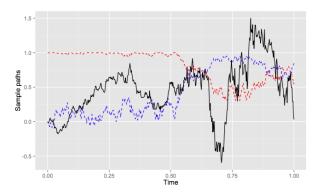
$$\mathbb{H}_n(heta) = \sum_{j=1}^n \log \phi\Big(Y_{t_j};\,Y_{t_{j-1}},\,rac{T}{n}\exp\Big(\langle X_{t_{j-1}}, heta
angle\Big)\,\Big) \quad \Rightarrow \quad \hat{ heta}_n,\,\sqrt{n}$$
-AMN

(1) QBIC for estimating volatility of continuous process

$$dY_t = \exp\Big(rac{1}{2}\langle X_t, heta
angle\Big)dw_t, \qquad X_t = (X_{1,t}, \dots, X_{p,t})$$

• Data $(X_{t_i}, Y_{t_i})_{i=0}^n$, $t_j := jT/n$

- e.g. $\sup_{t \in \mathbb{R}} |X_t(\omega)| < \infty$, $P\left\{\lambda_{\min}\left(\frac{1}{T}\int_0^T X_t^{\otimes 2} dt\right) \le r^{-1}\right\} \lesssim r^{-L}$
- Gaussian QLF, (Genon-Catalot and Jacod (1993), Uchida and Yoshida (2013)):


$$\mathbb{H}_n(\theta) = \sum_{j=1}^n \log \phi\Big(Y_{t_j};\,Y_{t_{j-1}},\,\frac{T}{n}\exp\left(\langle X_{t_{j-1}},\theta\rangle\right)\Big) \quad \Rightarrow \quad \hat{\theta}_n,\,\,\sqrt{n}\text{-AMN}$$

Quasi BIC:
$$\hat{\mathcal{S}}_n = -2\mathbb{H}_n(\hat{\theta}_n) + \log|-\partial_{\hat{\theta}}^2\mathbb{H}_n(\hat{\theta}_n)|$$

Formal BIC:
$$\mathrm{BIC}_n = -2\mathbb{H}_n(\hat{\theta}_n) + p\log n$$

Formal AIC(?):
$$\mathrm{fAIC}_n = -2\mathbb{H}_n(\hat{\theta}_n) + 2p$$

- p=3; $X_{1,t}\equiv 10$, $X_{2,t}=\cos(B_t)$, $X_{3,t}=\sin(B_t)$ • B: standard BM independent of w
- T = 1, $\sharp MC = 1000$

Criterion			n =	= 200						n :	= 500						n =	1000			
	1	2	3	4*	5	6	7	1	2	3	4*	5	6	7	1	2	3	4^*	5	6	7
QBIC	78	1															3				
BIC	6	42	245	703	4	0	0	7	5	161	826	1	0	0	4	1	122	873	0	0	0
fAIC	74	40	236	648	2	0	0	94	2	155	748	1	0	0	119	1	115	765	0	0	0

• Estimation performance $\theta_0=(0,-2,3)$

			n = 200			n = 500			n = 1000	
		$\hat{ heta}_1$	$\hat{m{ heta}}_{2}$	$\hat{m{ heta}}_{m{3}}$	$\hat{ heta}_1$	$\hat{\theta}_{2}$	$\hat{ heta}_3$	$\hat{ heta}_1$	$\hat{\theta}_{2}$	$\hat{ heta}_3$
1	mean	-0.0242	-1.7665	2.9373	-0.0091	-1.9145	2.9985	-0.0080	-1.9306	2.9845
	s.d.	0.2290	2.2493	0.8445	0.1366	1.3373	0.5130	0.1028	1.0048	0.3855
2	mean	0.0620	-2.5040	-	0.0870	-2.7296	-	0.1050	-2.8925	-
	s.d.	0.6529	6.3498	-	0.6370	6.1847	-	0.6329	6.1223	-
3	mean	-0.2047	-	2.9181	-0.2029	-	2.9897	-0.2048	-	3.0437
	s.d.	0.0471	-	1.2826	0.0473	-	1.2787	0.0503	-	1.2950
4*	mean	-	-1.9948	2.9628	-	-1.9976	2.9963	-	-2.0038	2.9883
	s.d.	-	0.1712	0.3275	-	0.1053	0.1918	-	0.0751	0.1424
5	mean	-0.1029	-	-	-0.0946	-	-	-0.0871	-	- 1
	s.d.	0.1484	-	-	0.1527	-	-	0.1518	-	-
6	mean	-	-1.9063	-	-	-1.8867	-	-	-1.8722	-
	s.d.	_	0.4801	-	_	0.4622	-	-	0.4716	-
7	mean	-	_	3.0147	-	-	2.9964	-	-	2.9648
	s.d.	_	-	0.5319	_	-	0.5530	_	-	0.5440

$$dX_t = a(X_t, \alpha)dt + b(X_t, \beta)dw_t$$

- $\bullet \ \ \mathsf{Data} \ (X_{t_j})_{j=0}^n, \quad t_j = jn^{-2/3} \ (T_n = n^{1/3} \to \infty), \quad \ \theta := (\alpha,\beta) \in \mathbb{R}^{p_\alpha} \times \mathbb{R}^{p_\beta}$
- Efficient Gaussian QLF (Kessler, 1997):

$$egin{aligned} \mathbb{H}_n(heta) &= \sum_{j=1}^n \log \phi\Big(X_{t_j};\, X_{t_{j-1}} + h_n a(X_{t_{j-1}}, lpha), \,\, h_n b^2(X_{t_{j-1}}, eta)\Big) \ &\Rightarrow \Big(\sqrt{T_n}(\hat{lpha}_n - lpha_0), \sqrt{n}(\hat{eta}_n - eta_0)\Big) \stackrel{\mathcal{L}}{ o} N(0, \operatorname{diag}(\Sigma_lpha, \Sigma_eta)) \end{aligned}$$

(2) QBIC for estimating ergodic diffusion

$$dX_t = a(X_t, \alpha)dt + b(X_t, \beta)dw_t$$

- Data $(X_{t_j})_{i=0}^n$, $t_j=jn^{-2/3}$ $(T_n=n^{1/3}\to\infty)$, $\theta:=(\alpha,\beta)\in\mathbb{R}^{p_\alpha}\times\mathbb{R}^{p_\beta}$
- Efficient Gaussian QLF (Kessler, 1997):

$$egin{aligned} \mathbb{H}_n(heta) &= \sum_{j=1}^n \log \phi\Big(X_{t_j};\, X_{t_{j-1}} + h_n a(X_{t_{j-1}}, lpha), \; h_n b^2(X_{t_{j-1}}, eta)\Big) \ &\Rightarrow \Big(\sqrt{T_n} (\hat{lpha}_n - lpha_0), \sqrt{n} (\hat{eta}_n - eta_0) \Big) \stackrel{\mathcal{L}}{
ightarrow} Nig(0, \operatorname{diag}(\Sigma_lpha, \Sigma_eta)ig) \end{aligned}$$

Quasi BIC:
$$\hat{\mathcal{S}}_n = -2\mathbb{H}_n(\hat{\theta}_n) + \log|-\partial_{\alpha}^2\mathbb{H}_n(\hat{\theta}_n)| + \log|-\partial_{\beta}^2\mathbb{H}_n(\hat{\theta}_n)|$$

Formal BIC:
$$\mathrm{BIC}_n = -2\mathbb{H}_n(\hat{ heta}_n) + p_{lpha} \log T_n + p_{eta} \log n$$

Formal AIC

(CIC, Uchida, 2010): $CIC_n = -2\mathbb{H}_n(\hat{\theta}_n) + 2n$

Adaptive model-selection consistency in multi-scaling case

$$dX_t = a(X_t, \alpha)dt + b(X_t, \beta)dw_t,$$

- Avoiding "full-model" search, reducing computation cost ²:
 - First, make a selection for the diffusion coefficient by the auxiliary quasi-log LF ignoring the drift term:

$$\hat{\mathcal{S}}_n^1 = -2\mathbb{H}_n^1(\hat{eta}_n) + \log|-rac{\partial_{eta}^2\mathbb{H}_n^1(\hat{eta}_n)|}{2}$$

2 Then, for the drift coefficient by making use of $\hat{\beta}_n$:

$$\hat{\mathcal{S}}_n^2 = -2\mathbb{H}_n(\hat{lpha}_n,\hat{eta}_n) + \log|-\partial_{lpha}^2\mathbb{H}_n(\hat{lpha}_n,\hat{eta}_n)|$$

followed by the coefficient-selection consistency.

²General multi-scale LAQ case can be treated similarly.

Simulation design

$$dX_t = -X_t dt + \exp\left\{\frac{1}{2}(-2\cos X_t + 1)\right\} dw_t, \quad X_0 = 1$$

$$\begin{split} \text{Diff } 1 : & \exp \Big\{ \frac{1}{2} (\theta_{11} \cos X_t + \theta_{12} \sin X_t + \theta_{13}) \Big\}; \\ \text{Diff } 2 : & \exp \Big\{ \frac{1}{2} (\theta_{11} \cos X_t + \theta_{12} \sin X_t) \Big\}; \\ \text{Diff } 3 : & \exp \Big\{ \frac{1}{2} (\theta_{11} \cos X_t + \theta_{13}) \Big\}; \\ \text{Diff } 4 : & \exp \Big\{ \frac{1}{2} (\theta_{12} \sin X_t + \theta_{13}) \Big\}; \\ \text{Diff } 5 : & \exp \Big\{ \frac{1}{2} \theta_{11} \cos X_t \Big\}; \text{ Diff } 6 : \exp \Big\{ \frac{1}{2} \theta_{12} \sin X_t \Big\}; \text{ Diff } 7 : \exp \Big\{ \frac{1}{2} \theta_{13} \Big\} \\ & \text{Drif } 1 : \theta_{21} X_t + \theta_{22}; \\ \text{Drif } 2 : \theta_{21} X_t; \\ \text{Drif } 3 : \theta_{22} \end{split}$$

Joint QBIC (left) and adaptive QBIC (right)

Driff 1 Driff 2 Driff 3 Driff 4 Driff 5 Driff 6 Driff 7		Criteria			r	= 1000					
Drif 1 BIC (C) 0 24 (S) 90 (S) 0 50 (S) 0 1 Drif 2* QBIC (C) 20 (SI) 31 (121) 0 18 (S) 0 1 Drif 2* QBIC (C) 30 (SI) 17 (SI) 22 (SI) 10 (SI) 2 17 (SI) 0 2 0 0 3 3 17 (SI) 3 3 71 (SI) 0			Diff 1	Diff 2	Diff 3*	Diff 4	Diff 5	Diff 6	Diff 7		
CIC 20 31 121 0 18 0 1		QBIC	5	11	103	0	11	0	1		
OBIC 20 OBIC 20 OBIC OBIC	Drif 1	BIC	0	24	90	0	50	0	1		
Driff 2* BIC 2 24 542 1 234 0 3		CIC	20	31	121	0	18	0	1		
CIC 96 39 569 3 71 0 3		QBIC				2		0			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Drif 2*										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				39							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		QBIC	0	0	2	0	0	0	0		
Driff 1 Driff 2 Driff 3 Driff 4 Driff 5 Driff 6 Driff 7	Drif 3			0			0		0		
Diff 1 Diff 2 Diff 3* Diff 4 Diff 5 Diff 6 Diff 7		CIC	9	0	19	0	0	0	0		
Drif 1 QBIC 2 0 93 0 0 0 0 0 0 0 0 0					n	= 3000)				
Drif 1			Diff 1	Diff 2	Diff 3*	Diff 4	Diff 5	Diff 6	Diff 7		
CIC 22 1 166 0 1 0 0		QBIC	2	0	93	0	0	0	0		
OBIC 13 3 876 0 13 0 0	Drif 1	BIC	1	0	110	0	14	0	0		
Drif 2* BIC 1 5 811 0 51 0 0		CIC	22	1	166	0	1	0	0		
CIC 104 7 686 0 6 0 0						0		0	0		
Drif 3 QBIC 0 0 0 0 0 0 0 0 0	Drif 2*					0		0	0		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0			0		0	0		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Drif 3						0		0		
Diff 1 Diff 2 Diff 3* Diff 4 Diff 5 Diff 6 Diff 7 QBIC 1 0 72 0 0 0 0		CIC	2	0	5	0	0	0	0		
QBIC 1 0 72 0 0 0 0)							
			Diff 1	Diff 2	Diff 3*	Diff 4	Diff 5	Diff 6	Diff 7		
			1	0		0		0	0		
	Drif 1	BIC		0	94	0	1	0	0		
CIC 42 0 138 0 0 0 0											
QBIC 15 0 910 0 1 0 0		QBIC	15	0	910	0	1	0	0		
Drif 2* BIC 1 1 882 0 17 0 0	Drif 2*										
CIC 140 0 675 0 1 0 0					675						
QBIC 0 0 1 0 0 0			0	0	1	0	0	0	0		
Drif 3 BIC 0 0 4 0 0 0	Drif 3				4						
CIC 0 0 4 0 0 0 0		CIC	0	0	4	0	0	0	0		

	Criteria			n	= 1000			
		Diff 1	Diff 2	Diff 3*	Diff 4	Diff 5	Diff 6	Diff 7
Drif 1	QBIC	8	6	108	0	6	0	0
DIII 1	BIC	0	13	115	0	37	0	0
Drif 2*	QBIC	27	12	774	0	56	0	1
Drif 2	BIC	2	17	594	0	192	0	1
Drif 3	QBIC	0	0	2	0	0	0	0
Drif 3	BIC	1	0	28	0	0	0	0
	Criteria			n	= 3000			
		Diff 1	Diff 2	Diff 3*	Diff 4	Diff 5	Diff 6	Diff 7
Drif 1	QBIC	3	0	92	0	0	0	0
DIII 1	BIC	1	0	116	0	7	0	0
Drif 2*	QBIC	12	1	888	0	4	0	0
Drif 2	BIC	1	4	833	0	31	0	0
Drif 3	QBIC	0	0	0	0	0	0	0
Drif 3	BIC	0	0	7	0	0	0	0
	Criteria							
		Diff 1	Diff 2	Diff 3*	Diff 4	Diff 5	Diff 6	Diff 7
Drif 1	QBIC	2	0	71	0	0	0	0
DIII 1	BIC	0	0	94	0	1	0	0
Drif 2*	QBIC	14	0	912	0	0	0	0
Drif 2	BIC	1	1	886	0	13	0	0
Drif 3	QBIC	0	0	1	0	0	0	0
Drif 3	віс	0	0	4	0	0	0	0

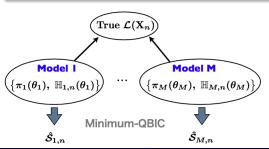
Joint QBIC spent nearly double time compared with adaptive QBIC

- 2 QBIC: extended Schwarz's reach
- - Adaptive model-selection consistency in multi-scaling case
- Summary

Summary

$$-2\log\left(\int_{\Theta}\exp\left(\mathbb{H}_n(\theta)\right)\pi(\theta)d\theta\right)\approx -2\mathbb{H}_n(\hat{\theta}_n) + \log\left|-\partial_{\theta}^2\mathbb{H}_n(\hat{\theta}_n)\right| - 2\log\pi_n(\hat{\theta}_n) - p\log(2\pi)$$

QBIC: Extended Schwarz's statistics for LAQ models under possible multi-scaling


$$egin{aligned} \hat{\mathcal{S}}_n &:= -2\mathbb{H}_n(\hat{ heta}_n) + \logig| - \partial_{ heta}^2\mathbb{H}_n(\hat{ heta}_n)ig| \ &= -2\mathbb{H}_n(\hat{ heta}_n) + \sum_{k=1}^K p_k \logig(a_{kn}(\hat{ heta}_n)^{-2}ig) + \underbrace{\logig| - A_n\partial_{ heta}^2\mathbb{H}_n(\hat{ heta}_n)A_nig|}_{=O_E(1)} \end{aligned}$$

Summary

$$-2\log\left(\int_{\Theta}\exp\left(\mathbb{H}_n(\theta)\right)\pi(\theta)d\theta\right)\approx -2\mathbb{H}_n(\hat{\theta}_n) + \log\left|-\partial_{\theta}^2\mathbb{H}_n(\hat{\theta}_n)\right| - 2\log\pi_n(\hat{\theta}_n) - p\log(2\pi)$$

QBIC: Extended Schwarz's statistics for LAQ models under possible multi-scaling

$$\begin{split} \hat{\mathcal{S}}_n := -2\mathbb{H}_n(\hat{\theta}_n) + \log \big| &- \partial_{\theta}^2 \mathbb{H}_n(\hat{\theta}_n) \big| \\ &= -2\mathbb{H}_n(\hat{\theta}_n) + \sum_{k=1}^K p_k \log \left(a_{kn}(\hat{\theta}_n)^{-2} \right) + \underbrace{\log \big| - A_n \partial_{\theta}^2 \mathbb{H}_n(\hat{\theta}_n) A_n \big|}_{=O_E(1)} \end{split}$$

- \mathcal{M}_k vs \mathcal{M}_m ,
 Approximation of
 - $\mathsf{KL}_{m,n} \mathsf{KL}_{k,n}$
 - $\bullet \log \frac{P(\mathcal{M}_m|\mathbf{X}_n)}{P(\mathcal{M}_k|\mathbf{X}_n)}$
- Adaptive consistent selection

References

- Eguchi, S. and Masuda, H. (2016), Schwarz type model comparison for LAQ models. arXiv:1606.01627
- Cavanaugh, J. E. and Neath, A. A. (1999), Generalizing the derivation of the Schwarz information criterion. Comm. Statist. Theory Methods, 28, 49–66.
- [2] Genon-Catalot, V. and Jacod, J. (1993), On the estimation of the diffusion coefficient for multi-dimensional diffusion processes. Ann. Inst. H. Poincaré Probab. Statist. 29, 119–151.
- [3] Kessler, M. (1997), Estimation of an ergodic diffusion from discrete observations. Scand. J. Statist., 24, 211–229.
- [4] Lv, J. and Liu, J. S. (2014), Model selection principles in misspecified models, J. R. Stat. Soc. B., 76, 141–167.
- [5] Schwarz, G. (1978), Estimating the dimension of a model. Ann. Math. Statist., 6, 461-464.
- [6] Uchida, M. and Yoshida, N. (2013), Quasi likelihood analysis of volatility and nondegeneracy of statistical random field. Stochastic Process. Appl. 123, 2851–2876.
- [7] Yoshida, N. (2011), Polynomial type large deviation inequalities and quasi-likelihood analysis for stochastic differential equations, Ann. Inst. Statist. Math., 63, 431–479.