A Statistical Approach to Topological Data Analysis

Bertrand MICHEL

Laboratoire de Statistique Théorique et Appliquée
Université Pierre et Marie Curie

Stochastic Geometry Conference
Nantes, April 6 2016
I - Introduction: Statistics and Topological Data Analysis
Topological data analysis and topological inference

- Geometric inference, algebraic topology tools and computational topology have recently witnessed important developments with regards to data analysis, giving birth to the field of topological data analysis (TDA).

- The aim of TDA is to infer relevant, qualitative and quantitative topological structures (clusters, holes ...) directly from the data.

- The two popular methods in TDA: **Mapper algorithm** [Singh et al., 2007] and **persistent homology** [Edelsbrunner et al., 2002].

- Topological inference methods aim to infer topological properties of an unknown topological space X, typically from a point cloud X_n “close” to X.
Application fields of TDA methods

[distribution of galaxies]

[Sensor Data]

Magnetometer Data (walking)

Magnetometer Data (cross trainer)

[3D shape database]
Topological data analysis methods can be used:

- For **exploratory analysis**, visualization:

- For **feature extraction** in supervised settings (prediction):

[Chazal et al., 2014b]

[Chazal et al., 2015a]
Statistics and TDA

Until very recently, TDA and topological inference mostly relied on deterministic approaches. Alternatively, a statistical approach to TDA means that:

- we consider data as generated from an unknown distribution
- the inferred topological features by TDA methods are seen as estimators of topological quantities describing an underlying object.

Non exhaustive list of questions for a statistical approach to TDA:

- proving consistency of TDA methods.
- providing confidence regions for topological features and discussing the significance of the estimated topological quantities.
- selecting relevant scales at which the topological phenomenon should be considered.
- dealing with outliers and providing robust methods for TDA.
- ...
II- Homology and Persistent homology
Point clouds in themselves do not carry any non trivial topological or geometric structure.

For a point cloud \mathbb{X}_n in \mathbb{R}^d (or in a metric space), the α-offset of \mathbb{X}_n is defined by

$$\mathbb{X}_n^\alpha = \bigcup_{x \in \mathbb{X}_n} B(x, \alpha).$$

More generally, for any compact set \mathbb{X},

$$\mathbb{X}^\alpha := \bigcup_{x \in \mathbb{X}} B(x, \alpha) = d_{\mathbb{X}}^{-1}([0, \alpha])$$

where the distance function $d_{\mathbb{X}}$ to \mathbb{X} is

$$d_{\mathbb{X}}(y) = \inf_{x \in \mathbb{X}} \|x - y\| \quad \text{(in } \mathbb{R}^d)$$

General idea: deduce from $(\mathbb{X}_n^\alpha)_{r>0}$ some topological and geometric information of an underlying object.
Non-discrete sets such as offsets, and also continuous mathematical shapes like curves, surfaces cannot easily be encoded as finite discrete structures.

A geometric simplicial complex \(C \) is a set of simplices such that:

- Any face of a simplex from \(C \) is also in \(C \).
- The intersection of any two simplices \(s_1, s_2 \in C \) is either a face of both \(s_1 \) and \(s_2 \), or empty.
Basic tools for TDA: Offsets and Simplicial Complexes

Examples:

- A simplex \([x_0, x_1, \cdots, x_k]\) is in the Čech complex \(\check{\text{Cech}}_{\alpha}(X_n)\) if and only if \(\bigcap_{j=0}^{k} B(x_j, \alpha) \neq \emptyset\).

- A simplex \([x_0, x_1, \cdots, x_k]\) is in the Rips complex \(\text{Rips}_{\alpha}(X_n)\) if and only if \(\|x_j - x_{j'}\| \leq \alpha\) for all \(j, j' \in \{1, \ldots, k\}\).

Can be also defined for a set of points in any metric space or for any compact metric space.

Nerve Theorem: the offsets \(X_n^\alpha\) of a point cloud \(X_n\) in \(\mathbb{R}^d\) are homotopy equivalent to the Čech complex \(\check{\text{Cech}}_{\alpha}(X_n)\)
Given a point cloud X_n in \mathbb{R}^d, we generally define a filtration of (nested simplicial) complexes by considering all the possible scale parameters $\alpha : (C_\alpha)_{\alpha \in \mathcal{A}}$.

\[C_{\alpha_1} \quad C_{\alpha_2} \quad \cdots \quad \cdots \quad \cdots \]
Homology inference

- **Singular homology** provides a algebraic description of “holes” in a geometric shape (connected components, loops, etc ...)

- **Betti number** β_k is the rank of the k-th homology group.

- **Computational Topology** : Betti numbers can be computed on simplicial complexes.

Homology inference [Niyogi et al., 2008 and 2011] [Balakrishnan et al., 2012] : The Betti number (actually the homotopy type) of Riemannian manifolds with positive reach can be recovered with high probability from offsets of a sample on (or close to) the manifold.
Persistent homology

Starting from a point cloud X_n, let $\text{Filt} = (C_\alpha)_{\alpha \in \mathcal{A}}$ be a filtration of nested simplicial complexes.

Persistent homology: identification of “persistent” topological features along the filtration.

- multiscale information ;
- more stable and more robust ;
- (but does not answer the scale selection problem...)
Barecodes and Persistence Diagrams

Filtration of simplicial complexes $\text{Filt}(X_n)$

Offsets

Barecode
Barecodes and Persistence Diagrams

Filtration of simplicial complexes $\text{Filt}(X_n)$

Offsets

Barecode

Dgm($\text{Filt}(X_n)$)

Persistence diagram of the filtration $\text{Filt}(X_n)$ built on X_n.
The bottleneck distance between two diagrams Dgm_1 and Dgm_2 is

$$d_b(Dgm_1, Dgm_2) = \inf_{\gamma \in \Gamma} \sup_{p \in Dgm_1} \|p - \gamma(p)\|_\infty$$

where Γ is the set of all the bijections between Dgm_1 and Dgm_2 and

$$\|p - q\|_\infty = \max(|x_p - x_q|, |y_p - y_q|).$$
Distance between persistence diagrams and stability

Theorem [Chazal et al., 2012]: For any compact metric spaces \((X, \rho)\) and \((Y, \rho')\),

\[
d_b \left(\text{Dgm}(\text{Filt}(X)), \text{Dgm}(\text{Filt}(Y)) \right) \leq 2 \ d_{GH} \ (X, Y).
\]

Consequently, if \(X\) and \(Y\) are embedded in the same metric space \((\mathbb{M}, \rho)\) then

\[
d_b \left(\text{Dgm}(\text{Filt}(X)), \text{Dgm}(\text{Filt}(Y)) \right) \leq 2 \ d_H \ (X, Y).
\]
III - Statistics and Persistent homology
Persistence diagram inference [Chazal et al., 2014b]
Joint work with F. Chazal, M. Glisse and C. Labruère.

(\mathbb{M}, ρ) metric space
X compact set in \mathbb{M}.

n points sampled in X according to μ

\hat{X}_n

well defined for any compact metric space [Chazal et al., 2012]

\hat{X}_n

Estimator of $\text{Dgm}(\text{Filt}(K))$

$\text{Dgm}(\text{Filt}(X))$

Convergence ???

$\text{Dgm}(\text{Filt}(\hat{X}_n))$
For $a, b > 0$, μ satisfies the (a, b)-standard assumption on its support X_μ if for any $x \in X_\mu$ and any $r > 0$:

$$\mu(B(x, r)) \geq \min(ar^b, 1).$$

$\mathcal{P}(a, b, M)$: set of all the probability measures satisfying the (a, b)-standard assumption on the metric space (M, ρ).

Theorem: For $a, b > 0$:

$$\sup_{\mu \in \mathcal{P}(a, b, M)} \mathbb{E}
\left[d_b(\text{Dgm}(\text{Filt}(X_\mu)), \text{Dgm}(\text{Filt}(\hat{X}_n))) \right] \leq C \left(\frac{\ln n}{n} \right)^{1/b}$$

where C only depends on a and b.

Under additional technical hypotheses, for any estimator $\hat{\text{Dgm}}_n$ of $\text{Dgm}(\text{Filt}(X_\mu))$:

$$\liminf_{n \to \infty} \sup_{\mu \in \mathcal{P}(a, b, M)} \mathbb{E}
\left[d_b(\text{Dgm}(\text{Filt}(X_\mu)), \hat{\text{Dgm}}_n) \right] \geq C' n^{-1/b}$$

where C' is an absolute constant.
Confidence sets for persistence diagrams [Fasy et al., 2014]

\[P \left(\text{Dgm}(\text{Filt}(K)) \in \hat{R} \right) \geq 1 - \alpha \]
Confidence sets for persistence diagrams [Fasy et al., 2014]

Using the Hausdorff stability, we can define confidence sets for persistence diagrams:

\[d_b \left(\text{Dgm}(\text{Filt}(K)), \text{Dgm}(\text{Filt}(X_n)) \right) \leq d_H(K, X_n). \]

It is sufficient to find \(c_n \) such that

\[\limsup_{n \to \infty} \left(d_H(K, X_n) > c_n \right) \leq \alpha. \]
IV - Robust distance functions for TDA and geometric inference
Standard TDA methods are not robust to outliers

\[X^r := \bigcup_{x \in X} B(x, r) = d_X^{-1}([0, r]) \]

where the distance function \(d_X \) to \(X \) is

\[d_X(y) = \inf_{x \in X} \| x - y \| \]
Standard TDA methods are not robust to outliers

\[X^r := \bigcup_{x \in X} B(x, r) \]
\[= d_X^{-1}([0, r]) \]

where the distance function \(d_X \) to \(X \) is

\[d_X(y) = \inf_{x \in X} \| x - y \| \]
We would like to consider the sub levels of an alternative distance function related to the sampling measure, which support is \mathbb{X}, or close to \mathbb{X}.

Robust TDA with an alternative distance function?
Preliminary distance function to a measure P:
Let $u \in]0, 1[$ be a positive mass, and P a probability measure on \mathbb{R}^d:

$$\delta_{P,u}(x) = \inf \{ r > 0 : P(B(x,r)) \geq u \}$$

$\delta_{P,u}$ is the smallest distance needed to capture a mass of at least u.

$\delta_{P,u}$ is the quantile function at u of the r.v. $\|x - X\|$ where $X \sim P$.
Preliminary distance function to a measure \(P \):

Let \(u \in]0, 1[\) be a positive mass, and \(P \) a probability measure on \(\mathbb{R}^d \):

\[
\delta_{P,u}(x) = \inf \{ r > 0 : P(B(x,r)) \geq u \}
\]

Definition: Given a probability measure \(P \) on \(\mathbb{R}^d \) and \(m > 0 \), the distance function to the measure \(P \) (DTM) is defined by

\[
d_{P,m} : x \in \mathbb{R}^d \mapsto \left(\frac{1}{m} \int_0^m \delta_{P,u}(x) \, du \right)^{1/2}
\]
Properties of the DTM:

- Stability under Wasserstein perturbations:

\[\|d_{P,m} - d_{Q,m}\|_{\infty} \leq \frac{1}{\sqrt{m}} W_2(P,Q) \]

- The function \(x \mapsto d_{P,m}^2(x) \) is semiconcave, this is ensuring strong regularity properties on the geometry of its sublevel sets.

- Consequently, if \(\tilde{P} \) is a probability distribution close to \(P \) for Wasserstein distance \(W_2 \), then the sublevel sets of \(d_{\tilde{P},m} \) provide a topologically correct approximation of the support of \(P \).
Distance to The Empirical Measure (DTEM)

Let X_1, \ldots, X_n sample according to P and let P_n be the empirical measure. Then

$$d^2_{P_n, \frac{k}{n}}(x) = \frac{n}{k} \sum_{i=1}^{k} \|x - X(i)\|^2$$

where $\|X(1) - x\| \geq \|X(2) - x\| \geq \cdots \geq \|X(k) - x\| \cdots \geq \|X(n) - x\|$
Estimation of the DTM via the empirical DTM

[Chazal et al., 2014b] and [Chazal et al., 2015b]

Quantity of interest:

\[d_{P_n,k/n}^2(x) - d_{P,k/n}^2(x) \]

- Observe that

\[d_{P,m}^2(x) = \frac{1}{m} \int_0^m F_x^{-1}(u) du \]

where \(F_x \) is the cdf of \(\|x - X\|^2 \) with \(X \sim P \).

- The distance to the empirical measure is the empirical counterpart of the distance to \(P \):

\[d_{P_n,m}^2(x) = \frac{1}{m} \int_0^m F_{x,n}^{-1}(u) du \]

where \(F_{x,n} \) is the cdf of \(\|x - X\|^2 \) with \(X \sim P_n \).

- Finally we get that

\[d_{P_n,k/n}^2(x) - d_{P,k/n}^2(x) = \frac{1}{m} \int_0^m \{ F_{x,n}^{-1}(u) - F_x^{-1}(u) \} du \]
Estimation of the DTM via the empirical DTM

[Chazal et al., 2014b] and [Chazal et al., 2015b]

Quantity of interest:

\[d_{P, \frac{k}{n}}^2(x) - d_{P, \frac{k}{n}}^2(x) \]

Two complementary approaches of the problem:

- Asymptotic approach: \(\frac{k}{n} = m \) is fixed and \(n \) tends to infinity.

- Non asymptotic approach: \(n \) is fixed, and we want a tight control over the fluctuations of the empirical DTM, in function of \(k \), which can be taken very small.

We do not use Wasserstein stability for either of the two approaches. Wasserstein rates of convergence [Fournier and Guillin, 2013; Dereich et al., 2013] do not provide tight rates for the DTM in this context.
Theorem: Let P be a measure on \mathbb{R}^d with compact support. Let D be a compact domain on \mathbb{R}^d and $m \in (0,1)$. Assume that there exists a uniform upper bound ω_D on the modulus of continuity for the family $(F_x^{-1})_{x \in D}$ satisfying

$$\lim_{u \to 0} \omega_D(u) = \omega_D(0) = 0.$$

Then $\sqrt{n}(d_{P_n,m}^2 - d_{P,m}^2)$ converges in distribution to B on D, where B is a centered Gaussian process with covariance kernel

$$\kappa(x, y) = \frac{1}{m^2} \int_0^{F_x^{-1}(m)} \int_0^{F_y^{-1}(m)} \left(\mathbb{P} \left[B(x, \sqrt{t}) \cap B(y, \sqrt{s}) \right] - F_x(t)F_y(s) \right) ds \, dt.$$
Theorem: Let x be a fixed observation point in \mathbb{R}^d. Assume that $\omega_x : (0, 1] \rightarrow \mathbb{R}^+$ is an upper bound on the modulus of continuity of F^{-1}_x. Let $k < \frac{n}{2}$. For any $\lambda > 0$:

$$P \left(\left| d_{P_n, \frac{k}{n}}^2(x) - d_{P, \frac{k}{n}}^2(x) \right| \geq \lambda \right) \leq 2 \exp \left(-\frac{n}{8} \frac{k}{n} \omega_x \left(\frac{k}{n} \right)^2 \lambda^2 \right) + ...$$

Assume moreover that $\omega_x(u)/u$ is a non increasing function, then

$$\mathbb{E} \left(\left| d_{P_n, \frac{k}{n}}^2(x) - d_{P, \frac{k}{n}}^2(x) \right| \right) \leq \frac{C}{\sqrt{n}} \sqrt{\frac{k}{n}} \omega_x \left(\frac{k}{n} \right).$$

renormalization by the mass proportion
localization at the origin
parametric rate of convergence
statistical complexity of the problem
Fluctuations of the DTEM [Chazal et al., 2015b]

The quantile function F_x^{-1} carries some geometric information. For instance $\omega(0^+) = 0$ means that the support of dF_x is a closed interval.
Aim: studying the persistent homology of the sub-levels of the DTM and providing confidence regions.

Two alternative bootstrap methods:

- by bootstrapping the DTM
- Bottleneck Bootstrap
Bootstrap and significance of topological features
[Chazal et al., 2014b]

Bootstrapping the DTM
For $m \in (0, 1)$, define c_{α} by

$$\mathbb{P} \left(\sqrt{n} \left\| d_{P,m}^2 - d_{P_n,m}^2 \right\|_{\infty} > c_{\alpha} \right) = \alpha.$$

Let X_1^*, \ldots, X_n^* be a sample from P_n, and let P_n^* be the corresponding (bootstrap) empirical measure.

We consider the bootstrap quantity $d_{P_n^*,m}(x)$ of $d_{P_n,m}$.

The bootstrap estimate \hat{c}_{α} is defined by

$$\mathbb{P} \left(\sqrt{n} \left\| d_{P_n,m}^2 - d_{P_n^*,m}^2 \right\|_{\infty} > \hat{c}_{\alpha} \mid X_1, \ldots, X_n \right) = \alpha$$

where \hat{c}_{α} can be approximated by Monte Carlo.

Theorem: If F_{x}^{-1} is regular enough, the distance to measure function is Hadamard differentiable at P. Consequently, the bootstrap method for the DTM is asymptotically valid.
Bootstrap and significance of topological features
[Chazal et al., 2014b]

Bootstrapping the DTM

Dgm: persistence diagram of the sub-levels of $d_{P,m}$

\widehat{Dgm}: persistence diagram of the sub-levels of $d_{P_n,m}$.

Let

$$C_n = \left\{ E \in \mathcal{D}iag : d_b(\widehat{Dgm}, E) \leq \frac{\hat{c}_\alpha}{\sqrt{n}} \right\},$$

where $\mathcal{D}iag$ is the set of all the persistence diagrams.

Then,

$$\mathbb{P}(Dgm \in C_n) = \mathbb{P}\left(d_b(Dgm, \widehat{Dgm}) \leq \frac{\hat{c}_\alpha}{\sqrt{n}} \right) \geq \mathbb{P}\left(\|d_{P,m}^2 - d_{P_n,m}^2\|_\infty \leq \frac{\hat{c}_\alpha}{\sqrt{n}} \right)$$

Bootstrap estimate
Bootstrap and significance of topological features
[Chazal et al., 2014b]

The Bottleneck Bootstrap

\(\hat{Dgm} : \) persistence diagram of the sub-levels of \(d_{P,m} \)
\(\hat{Dgm} : \) persistence diagram of the sub-levels of \(d_{P_n,m} \).
\(\hat{Dgm}^* : \) persistence diagram of the sub-levels of \(d_{P_n^*,m} \).

We directly bootstrap in the set of the persistence diagram by considering the random quantity \(d_b(\hat{Dgm}^*, \hat{Dgm}) \). We define \(\hat{t}_\alpha \) by

\[
\mathbb{P} \left(\sqrt{n} d_b(\hat{Dgm}^*, \hat{Dgm}) > \hat{t}_\alpha \mid X_1, \ldots, X_n \right) = \alpha.
\]

The quantile \(\hat{t}_\alpha \) can be estimated by Monte Carlo.
Bootstrap and significance of topological features
[Chazal et al., 2014b]

For both methods we can identify significant features by putting a band of size $2\hat{c}_\alpha$ or $2\hat{t}_\alpha$ around the diagonal:

In practice, the bottleneck bootstrap can lead to more precise inferences because in many cases the following stability result is not sharp

$$d_b(\hat{D}gm, Dgm) \leq \|d_{P,m}^2 - d_{P_n,m}^2\|_\infty.$$
Concluding remarks

• TDA methods focus on the topological properties (homology / persistent homology) of a shape.

• TDA methods can be used
 – as an “exploratory method”, in particular when the point cloud is sampled on (close to) a real geometric object
 – as a “feature extraction” procedure, next these extracted features can be used for learning purposes.

• TDA is an emerging field, at the interface maths, computer sciences, statistics.

• Many topics about the statistical analysis of TDA

• Applications in many fields of sciences (medecine, biology, dynamic systems, astronomy, dynamical systems, physics ...)

• TDA methods need to bring together Geometric Inference, Computational Topology and Geometry, Statistics and Learning methods.
Thank you !
References

References

References

Topological invariants

How topological spaces can be compared from a topological point of view?

For comparing topological spaces, we consider topological invariants (preserved by homeomorphism): numbers, groups, polynomials.
Topological invariants

How topological spaces can be compared from a topological point of view?

For comparing topological spaces, we consider topological invariants (preserved by homeomorphism) : numbers, groups, polynomials.

Homotopy is weaker than homeomorphism but is preserves many topological invariants.

- Two continuous functions $f : X \to Y$ and $g : X \to Y$ are **homotopic** if there exists a continuous application $H : X \times [0, 1] \to Y$ such that $H(\cdot, 0) = f$ and $H(\cdot, 1) = g$.
- Two topological spaces X and Y are **homotopic** if there exists two continuous applications $f : X \to Y$ and $g : Y \to X$ such that
 - $g \circ f$ is homotopic to id_X;
 - $f \circ g$ is homotopic to id_Y;

Topological Stability and Regularity

Topological inference: under “regularity assumptions”, topological properties of X can be recovered from (the off-sets) of a close enough object Y.
Topological Stability and Regularity

Topological inference: under “regularity assumptions”, topological properties of X can be recovered from (the off-sets) of a close enough object Y.

- The *local feature size* is a local notion of regularity:
 For $x \in X$, $\text{lfs}_X(x) := d(x, \mathcal{M}(X^c))$.

- The global version of the local feature size is the *reach* [Federer, 1959]:

 $$\kappa(X) = \inf_{x \in X^c} \text{lfs}_X(x).$$

 The reach is small if either X is not smooth or if X is close to being self-intersecting.

- Weak feature size and its extensions [Chazal and Lieutier, 2007] (by considering the critical values of d_X).
Topological Stability and Regularity

Topological inference: under “regularity assumptions”, topological properties of X can be recovered from (the offsets) of a close enough object Y.

$$d_H(X, Y) = \inf \{ \alpha \geq 0 \mid X \subset Y^\alpha \text{ and } Y \subset X^\alpha \}$$

Example:

Theorem [Chazal and Lieutier, 2007]: Let X and Y be two compact sets in \mathbb{R}^d and let $\varepsilon > 0$ be such that $d_H(X, Y) < \varepsilon$, $\text{wfs}(X) > 2\varepsilon$ and $\text{wfs}(Y) > 2\varepsilon$. Then for any $0 < \alpha < 2\varepsilon$, X^α and Y^β are homotopy equivalent.
Topological Stability and Regularity

Topological inference: under “regularity assumptions”, topological properties of X can be recovered from (the off-sets) of a close enough object Y.

$$d_H(X, Y) = \inf \{ \alpha \geq 0 \mid X \subset Y^\alpha \text{ and } Y \subset X^\alpha \}$$

Example:

Theorem [Chazal and Lieutier, 2007]: Let X and Y be two compact sets in \mathbb{R}^d and let $\varepsilon > 0$ be such that $d_H(X, Y) < \varepsilon$, $\text{wfs}(X) > 2\varepsilon$ and $\text{wfs}(Y) > 2\varepsilon$. Then for any $0 < \alpha < 2\varepsilon$, X^α and Y^β are homotopy equivalent.

Sampling conditions in Hausdorff metric.

Statistical analysis of homotopy inference can be deduced from support estimation of a distribution under the Hausdorff metric.