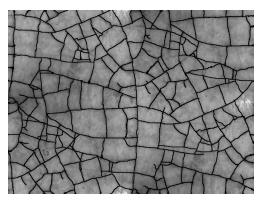
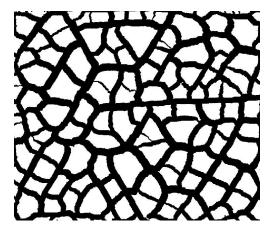
# STIT tessellations – a mathematical model for structures generated by sequential division

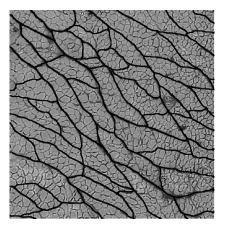
Werner Nagel, Jena



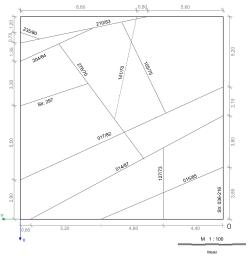
Craquelée on a ceramic surface (Photo: G. Weil)



Simulated cracks in soil (H.-J. Vogel)

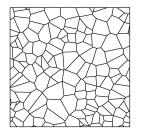


Connective tissue in a rat muscle (I. Erzen)

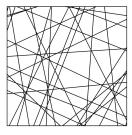


Gris Perla.jpg
Fissures in granite (D. Nikolayev, S. Siegesmund, S. Mosch, A. Hoffmann)

#### Mathematical models for tessellations

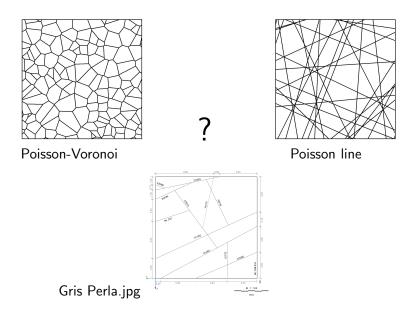


Poisson-Voronoi

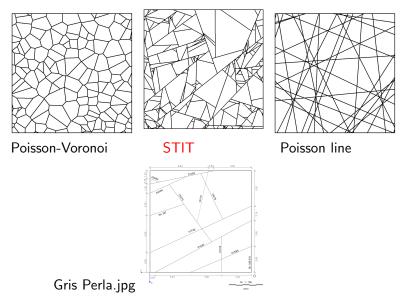


Poisson line

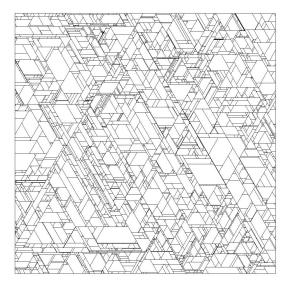
#### Mathematical models for tessellations



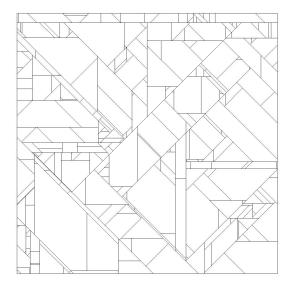
#### Mathematical models for tessellations



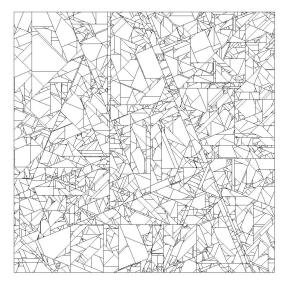
#### three directions



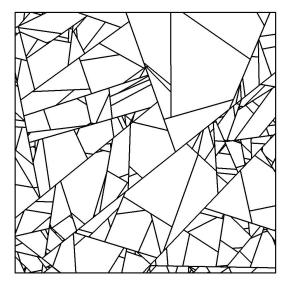
#### four directions

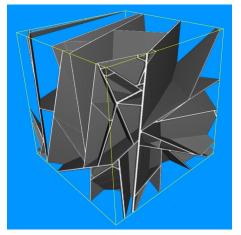


#### eight directions



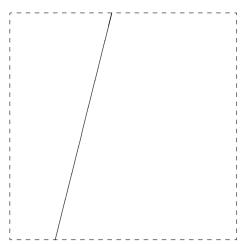
#### isotropic model

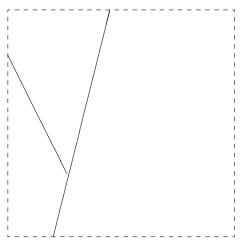


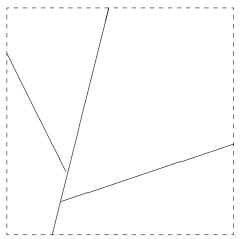


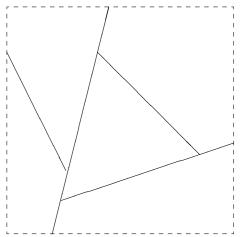
3d isotropic STIT model (Ohser/Lautensack/Sych)

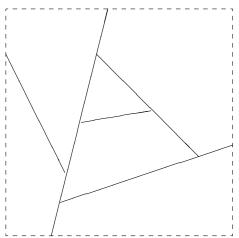


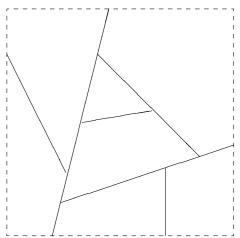












 $(Y_t, t > 0)$  ...STIT process in  $\mathbb{R}^d$  determined by

ullet  $\Lambda$  ... translation invariant measure on  $(\mathcal{H},\mathfrak{H})$  on the space of hyperplanes in  $\mathbb{R}^d$ 

$$\Lambda = \mathrm{image} \left[ \ \gamma \cdot \ell \otimes \theta \ \right]$$

 $\gamma > 0$  ...intensity (i.e. scaling parameter),  $\ell$  ... Lebesgue measure, distance from the origin,  $\theta$  ...directional distribution

 $(Y_t, t > 0)$  ...STIT process in  $\mathbb{R}^d$  determined by

ullet  $\Lambda$  ... translation invariant measure on  $(\mathcal{H},\mathfrak{H})$  on the space of hyperplanes in  $\mathbb{R}^d$ 

$$\Lambda = \mathrm{image} \left[ \ \gamma \cdot \ell \otimes \theta \ \right]$$

 $\gamma > 0$  ...intensity (i.e. scaling parameter),  $\ell$  ... Lebesgue measure, distance from the origin,  $\theta$  ...directional distribution

Λ([C]) ... parameter of the
 exponential life-time distr. of an individual cell C,
 [C] ... set of hyperplanes that intersect C

 $(Y_t, t > 0)$  ...STIT process in  $\mathbb{R}^d$  determined by

ullet  $\Lambda$  . . . translation invariant measure on  $(\mathcal{H},\mathfrak{H})$  on the space of hyperplanes in  $\mathbb{R}^d$ 

$$\Lambda = \mathrm{image} \left[ \ \gamma \cdot \ell \otimes \theta \ \right]$$

 $\gamma>0$  ...intensity (i.e. scaling parameter),  $\ell$  ... Lebesgue measure, distance from the origin,  $\theta$  ...directional distribution

- Λ([C]) ... parameter of the
   exponential life-time distr. of an individual cell C,
   [C] ... set of hyperplanes that intersect C
- $\Lambda_{[C]} = \frac{1}{\Lambda([C])} \Lambda(\cdot \cap [C])$  ... division rule



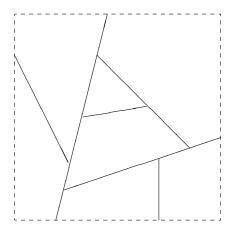
#### Features of STIT tessellations

Among a variety of cell division models, (only) STIT is mathematically tractable.

- STIT 'in-between' Poisson-Voronoi and Poisson line/plane tessellations – in many aspects
- STIT is a reference model for several crack/fissure or cell division structures,
   i.e. it can be a good starting point for model fitting
- The seminal paper: Nagel/Weiss (2005). Crack STIT tessellations characterization of the stationary random tessellations which are stable with respect to iteration. Adv. Appl. Prob. 37.

# A key issue: Consistency in space

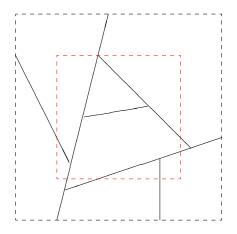
```
For any fixed t > 0 and W' \subset W: [Y_t \text{ constructed in } W] \cap W' \stackrel{D}{=} [Y_t \text{ constructed in } W']
```



# A key issue: Consistency in space

```
For any fixed t > 0 and W' \subset W:

[Y_t \text{ constructed in } W] \cap W' \stackrel{D}{=} [Y_t \text{ constructed in } W']
```



Intuitively:

If a construction is consistent in space, then we do not have "edge effects" in bounded windows.

## Intuitively:

If a construction is consistent in space, then we do not have "edge effects" in bounded windows.

#### Moreover:

If the construction is consistent in space, then we have the

existence of a random tessellation in the whole space  $\mathbb{R}^d$ 

such that its distribution coincides in any bounded window with the construction (Theorem by Schneider and Weil).

**Theorem** (N. and Weiss 2005)

The STIT tessellation process is consistent in space.

**Theorem** (N. and Weiss 2005)

The STIT tessellation process is consistent in space.

**Theorem** (N. and Biehler 2015)

The STIT tessellation processes are the ONLY cell division processes which are consistent in space.

Cell Division process: Given any cell, its life time and division rule is (conditionally) independent from all the other cells.

#### Features of STIT tessellations

STIT 'in-between'

Poisson-Voronoi and Poisson line/plane tessellations – in many aspects

Results by

N./Weiß, and

Redenbach/Thäle

#### Assumptions:

- $\mathbb{R}^3$ , i.e. 3d case,
- homogeneous (i.e. spatially stationary) and
- isotropic (i.e. distribution invariant under rotations) tessellations.

#### Upper index:

 $P \dots$  Poisson plane tessellation

V ... Poisson Voronoi tessellation

none ... STIT tessellation

Rescaled, such that

Mean number of cells per unit volume

$$N_3^P = N_3 = N_3^V$$

Then:

Per unit volume:

#### Mean

6 
$$N_0^P = N_0 \approx 0.887$$
  $N_0^V$  number of vertexes (nodes)  
4  $N_1^P = N_1 \approx 0.887$   $N_1^V$  number of edges  
 $\frac{7}{3}$   $N_2^P = N_2 \approx 0.901$   $N_2^V$  number of faces  
 $S_V^P = S_V \approx 0.853$   $S_V^V$  total area of faces  
2  $L_V^P = L_V \approx 0.829$   $L_V^V$  total length of edges

$$V_3^P=V_3=V_3^V$$
 volume  $A_3^P=A_3\approx 0.853$   $A_3^V$  surface  $B_3^P=B_3\approx 0.829$   $B_3^V$  mean width  $\frac{3}{2}$   $U_3^P=U_3\approx 0.829$   $U_3^V$  total edge length

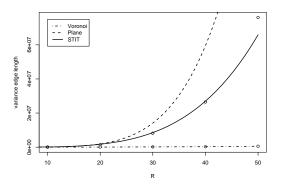
Mean

For the typical cell:

$$N_{30}^P=8;$$
  $N_{30}=24;$   $N_{30}^V\approx 27.071$  number of nodes  $N_{31}^P=12;$   $N_{31}=36;$   $N_{31}^V\approx 40.606$  number of edges  $N_{32}^P=6;$   $N_{32}=14;$   $N_{32}^V\approx 15.535$  number of faces

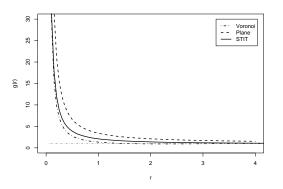
Mean

# Second order quantities



 $\mathbb{R}^3$ ; variance of total edge length in cube with side-length R

# Second order quantities



 $\mathbb{R}^3;$  pair correlation function of the PP of nodes (R./Th.)

## Summary

- For homogeneous (spatially stationary) tessellations:
   Poisson-Voronoi tess.: always isotropic
   Poisson plane tess. and STIT: arbitrary directional distr.
- Poisson plane tess. and STIT: typical cells identically distr.
   i.e. the same shape and size distribution of the cells.
- Poisson plane tess. and STIT: different arrangement of cells
- Isotropic STIT and Poisson-Voronoi : 'topol. param.' similar
   Isotropic Poisson plane tess.: significant difference

## Summary

STIT fills a gap between Poisson Voronoi and Poisson plane tessellations.

Therefore,

STIT should be taken into account, when a tessellation model is adapted to a real structure.