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The Langevin equation

Take N particles moving in a fluid (with N ~ 10%*). Let q(t) be their positions
and p(t) their velocities. The particles are submitted to

@ a potential V and the associated force —VV/,

@ a friction force —yp,
@ a collision term %dW.

Then applying the fundamental principle of dynamic, we find the Langevin
equation.

dq(t) = p(t)dt
dp(t) = (=VV(q(t)) — yp(t))dt + \/ ZdW(t)
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Friction limit
If v — o0, we assume the acceleration is negligible. It is called the friction limit. It
means the dynamic is dominated by collisions. Then

dq(t) = p(t)dt
0= (=VV(q(t)) — vp(t))dt +,/ Z dW(t)

dq(t) = =y 'V V(q(t))dt + \/’YzﬂdW(t).

In this talk, we focus on this following simplified equation called the overdamped
Langevin equation:

and finally

dX(t) = f(X(t))dt + ocdW(t)
where f = =V V.
This is a Stochastic Differential Equation (SDE). It means that X satisfies

X(t) = X(0) + Lt F(X(s))ds + o W(t).
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Two methods for ODEs

Problem:
y' ="£y), y(0)=y
Example of three numerical methods, with t, = nh < T = Nh and y, >~ y(t,):
o Explicit Euler: y,4+1 = yn + hf(yn)

® RK2: yoy1 = yo + hf(yn + 2 (ya))
o RK4:

h h h h
Ynt1 = Yn + g[f(}/n) + 2f (y, + Ef()/n)) +2f(yn + Ef(}’n + Ef(yn)))

F (4 B+ 2+ 2F ()]

A scheme has local order p iif |y(t1) — y1| < ChP*HL.
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Deriving the order of a Runge-Kutta method

The equation y’ = f(y) gives y'(0) = f(yo).
The equation y” = f'(y)(y’) = f'(y)(f(y)) gives y"(0) = f'(y0)(f(10)). etc...

Taylor expansion of the real solution:

h3

h2
y(t1) = yo + hf (yo) + ?f/f(}’o) + g(f/flf + (f, ) (y0) + .-

Taylor expansion of the numerical scheme: for RK2,
h
1= yo+ hf(yo + 2 f(y0))
h? h?
= yo + hf (o) + ?f’f()/o) + Ff”(ﬂ f)(vo) + ...

Remark J

The performance of a method greatly depends of its order.
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The magic of B-series

Define a set of trees representing differentials
o Flo)(f)=f
o F)(F) = rFF

° F(\/I)(f) = f"(f,f'f)
Then
Q y'(0) = f(yo) becomes y'(0) = F(e)(f)(y0).
@ y(0) = '(y0)(F(y)) becomes y"(0) = F(})(F)(xo).

Q y"(0) = <F<E> + FON) (0).

Q y9(0) = ZlT‘:qu(T)F(T)(yo) where « can be computed easily with a
recursive formula.

A similar development can be obtained for all Runge-Kutta methods, allowing to
obtain order conditions without tedious computations.
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First schemes: the strong Euler-Maruyama method
Overdamped Langevin equation:

dX = f(X)dt + cdW, f=-VV
The strong Euler-Maruyama method:

Xos1 = X + hf(Xa) + o(W((n +1)h) — W(nh)).

Strong Euler-Maruyama method
T T T T T
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First schemes: the weak Euler-Maruyama method
Overdamped Langevin equation:

dX = f(X)dt + odW, f=-VV
The Euler-Maruyama method:
X1 = X + hf(X,) + o/ hén,

where £, ~ N(0, I) are independent standard Gaussian variables.
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First schemes: the weak Euler-Maruyama method
Overdamped Langevin equation:

dX = f(X)dt + odW, f=-VV
The Euler-Maruyama method:
Xni1 = Xo + hf(X,) + oVhe,,
where £, ~ N(0, I) are independent standard Gaussian variables.

Weak Euler-Maruyama method

4
T T T T

T T
—Exact solution
5||—Numerical approximation

3+
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The weak convergence: definition and tools

Definition

A numerical scheme is said to have local weak order p if for all smooth ¢ with
polynomial growth,

[E[¢(X1)1Xo = x] = E[¢(X (h))|X(0) = x]| < C(x, §)h"*.

For example, the Euler-Maruyama method has weak order 1.
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The weak convergence: definition and tools

Definition
A numerical scheme is said to have local weak order p if for all smooth ¢ with

polynomial growth,
[E[¢(X1)|Xo = x] = E[¢(X())|X(0) = x]| < C(x,9)h"*™.

For example, the Euler-Maruyama method has weak order 1.

Let u(x,t) = E[¢p(X(t))|X(0) = x], x € RY, t > 0, then under certain
assumptions, u satisfies the following backward Kolmogorov equation:

12 /35
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Classical tools for the weak convergence

We develop the exact solution in Taylor series:

h2
E[¢(X(h))|X(0) = x] = ¢(x) + hL(x) + 3$2¢(X) +
We compare with the Taylor series of the numerical approximation:

E[¢(X1)|Xo = x] = ¢(x) + hAop(x) + P A1p(x) + ...

Theorem (Talay, Tubaro (1990) and Milstein, Tretyakov (2004))

Under assumptions, the scheme is of weak order p if

1 _, .
ﬁfj = Ajfl, J = 1, ey P

= Tree formalism of B-series for deterministic problems: Butcher (1972) and
Hairer, Wanner (1974),...

= Tree formalism for strong and weak errors on finite time: Burrage K., Burrage
P.M. (1996); Komori, Mitsui, Sugiura (1997); RoBler (2004,/2006), ...

Adrien Laurent (University of Geneva) Exotic aromatic B-series Rencontres Lebesgue, Brest, 2018 13 /35



Ergodicity, invariant measure
Ergodicity property: there exists a (unique) invariant measure p., such that

T+

)
lim = f H(X(s))ds = j 60)po(y)dy as.
0 Rd

Under ergodicity assumption, p, is
: a steady state of the Fokker-Planck
equation, i.e.

L*p, =0.

05

For Brownian dynamics
. dX = —VV(X)dt + \/2dW, we have
po(x) = Ze= V)

15 -1 05 0 05 1 15
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Order of convergence for the invariant measure

Definition (Convergence for the invariant measure)

We call error of the invariant measure the quantity

1 N
(6.h) = | Jim 5 D100 = [ dpal)dy).
n=0

N—+x

The scheme is of order p if for all test function ¢, e(¢, h) < C(x, ¢)hP.

Theorem (Abdulle, Vilmart, Zygalakis (2014);
Related work: Debussche, Faou (2012); Kopec (2013))

Under technical assumptions, if .AJ’." pe =0,j=2...p—1, ie for all test
functions ¢,

f Aj¢p1dy:07 j=2,...,p—1,
Rd

then the numerical scheme has order p for the invariant measure.
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Example: the #-method

Overdamped Langevin equation:
dX = f(X)dt + odW, f=-VV
The 6-method:
X1 = X + h(1 = 0)F(Xe) + hOF (Xps1) + o\/hEn,
where £, ~ N(0, I) are independent standard Gaussian variables.

Methodology:
@ Compute the Taylor expansion of Xi,
@ Compute the Taylor expansion of ¢(X1) ,
@ Compute E[¢(X7)] and deduce the A;¢,
@ Simplify RSd A;jd(y)p(y)dy.
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Example: the #-method

We have (for & ~ N(0, I4))

X1 = x + Vhot + hf + hWhOof'¢ + RO f + h*—— bo o (€6 +

It yields E[¢(X1)|Xo = x] = ¢(x) + hLp(x) + h*A16(x) + ..., where
A6 = E[867'F + %sb”(f )+ 00160 + 0070 (.0

2

S o(F.6.6) + ¢<“>(s £.£,9)
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Grafted aromatic forests

Differential trees and B-series used for numerical analysis: Butcher (1972) and

Hairer, Wanner (1974) (See also Hairer, Wanner, Lubich (2006) and Butcher
(2008))

We use trees as a powerful notation for our differentials. We denote F(7)(¢) the
elementary differential of a tree 7.

o F(e)(¢) = o
o F)(¢) = ¢'f

oﬂ\%w=WMPﬂ
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Grafted aromatic forests

Differential trees and B-series used for numerical analysis: Butcher (1972) and
Hairer, Wanner (1974) (See also Hairer, Wanner, Lubich (2006) and Butcher
(2008))

We use trees as a powerful notation for our differentials. We denote F(7)(¢) the
elementary differential of a tree 7.

° F(o)(9) = ¢

o F)(o) = o'f

o FOA0) = (e,
Aromatic forests: introduced by Chartier, Murua (2007) (See also Bogfjellmo
(2015))

F(OOI)(¢) = div(f) x (Z a,-g-ajf,-) x &'f
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Grafted aromatic forests

Differential trees and B-series used for numerical analysis: Butcher (1972) and
Hairer, Wanner (1974) (See also Hairer, Wanner, Lubich (2006) and Butcher
(2008))

We use trees as a powerful notation for our differentials. We denote F(7)(¢) the
elementary differential of a tree 7.

° F(o)(9) = ¢

o F)(o) = o'f

o FO0) = .1
Aromatic forests: introduced by Chartier, Murua (2007) (See also Bogfjellmo
(2015))

F(OOI)(¢) = div(f) x (Z a,-g-ajf,-) x &'f
Grafted aromatic forests: ¢ is represented by crosses (in the spirit of P-series)

H&4w=¢W%®am R¥1w=dﬂma
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Grafted forests for the 0-method

For the 6 method,
E[¢(X1)|Xo = x] = ¢(x) + hLp(x) + h*Ar16(x) + ...
and A; is given by

2
Aa6 = BIOGTE+ 507(F,) + S5 F1(6.) + 020 (F5.0

2 o)

Lae) ot @
+ 607,66 + 60 (6,6,6,6)]

BNV
—ElF<9+§ +T + 0o

PN gxf/) <¢>].
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New exotic aromatic forests : adding lianas
We add lianas to the aromatic forests.
Examples

F&) = 2" (F(e), &).

F(2) =X ¢"(er,8) = Ag.

F(I:’) _ Z ¢I’(ei7 f///(ej7 e, e’.)) = Z ¢”(e,-7 (Af)l(ei))'

ij
If v is the following forest

then F(7)(9) = X5, yor div(0if) x ¢'((Ouf)' (F" (05 , Bua)))-

Remark: our forests do not depend on the dimension.
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Computing the expectation using lianas

E [F (Y) (¢)] E[¢'f"(€,8)] Z 0i®-Ojx ;- E[€;6k]

i,k

=) 0i9.05f: = ¢/ AF
ij

—F <I> ()
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Main tool 1: expectation of a grafted exotic aromatic forest

Theorem

If v is a grafted exotic aromatic rooted forest with an even number of crosses,
E[F(7)(#)] is the sum of all possible forests obtained by linking the crosses of
pairwisely with lianas.

e[F(TV7) 0] - B el - 2 I OEIE 6t
= > dudBlE] + 3 ) 0 SE[EFIE[E]]
i ij

= 32 dijd = 3F (752 ().
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Explicit formula for A;
The operator A; given by

E[6(X1)[Xo = x] = ¢(x) + hLo(x) + h* Ar(x) + ...

is now convenient to write with exotic aromatic trees.

2
A1¢p = E[0§'f'f + %¢”(f, )+ e%qﬁ’f”(f,&) + 002" (£'¢,€)
2

060 + Do (e g 66
2 7> 24 B
= E[F(GLL %'\./'Jr Q;ﬁ\I/Jr aazb
0'2 0'4
+ 7\V + ﬂx\\f/x) (qﬁ)]
5

=F (9} + %.\/ + %ﬂf + 002l 4 %2(1) + Al ,‘f)) (4).
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Integrating by parts exotic aromatic forests

Goal: simplify § Aj¢p..dy, i.e. write it as { ¢/(f)p..dy.
E E

1 o
[ FCoomay =3 [ 500ty
R4 i RY

OX;0x;0X;

g Of; ¢ 0Ops
=— —p, fi .
ij URd Oxi0xj OX; Py + de 0xi0x; " 0x; dy]
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Integrating by parts exotic aromatic forests

Goal: simplify § Aj¢p..dy, i.e. write it as { ¢/(f)p..dy.
E E

1 o
[ FCoomay =3 [ 500ty
R4 i RY

OX;0x;0X;

g Of; ¢ 0Ops
=— —p, fi .
ij URd 0xi0xj OX; Py + JRd 0xi0x; " 0x; dy]

If f =—=VV, ps(x) = ZeV™ and Vp,, = %fp,. Then

f F)@pndy - —j FO)@)pndy — 2 f FON)(@)pondy.
R4 R g% JRrd

We write

Lo 28
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Main tool 2: integration by parts

Theorem

Integrating by part an exotic aromatic forest v amounts to unplug a liana from
the root, to plug it either to another node of y or to connect it to a new node,
transform the liana in an edge and multiply by % Then

Z f )pdy.

FeU(v.e)

f FOv)(@)pondy = —
RY

Example

con 28 2py AN 27 f LR
2 0—4 0-4

02 o

Theorem

Take a method of order p. If A, = F(v,) for a certain linear combination of
exotic aromatic forests vy, if v, ~ 7, and F(7,) = 0, then the method is at least
of order p + 1 for the invariant measure.

4
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Order conditions using exotic aromatic forests

In particular, if

E[¢(X1)[Xo = x] = F(e)(@) + Y, hMa(mF()(¢) + ...,
yeEAT

1<lv|<p

and if A, = F(7,) then
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Order conditions for stochastic RK methods
Theorem (Conditions for order p for the invariant measure)
Conditions for consistency and order 2 for stochastic Runge-Kutta methods

5]
Y[ =X, +h Y af (Y]) + diov/hé,,
j=1

i=1,..,s,

Xn+1 = Xn + h Z blf(yln) + U\ana
i=1

Order | Tree T | F(7)(¢) Order condition

1 ! o'f Sh=1

2 E (blf/f Z b,'C,' — 22 b,'d,' = —%

I | ¢Af | Shid?—2X bid = —1

v
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Postprocessors

Idea: extend to the context of ergodic SDEs the popular idea of effective order for
ODEs from Butcher (1969),

Yos1 = Xno Knoxy ' (), Yo = xno Ki o x; (%0)-
Postprocessing: X, = G,(X,), with weak Taylor series expansion

E(¢(Gn(x))) = ¢(x) + hPAp(x) + O(hP*).

Theorem (Vilmart (2015))

Under technical assumptions, assume that X, — X,41 and X, satisfy
A}kpw =0, j<p,

(Ao + [£, ) *pr =0,

then the scheme has order p + 1 for the invariant measure.

Remark: the postprocessing is needed only at the end of the time interval (not at
each time step).

Adrien Laurent (University of Geneva) Exotic aromatic B-series Rencontres Lebesgue, Brest, 2018 30/ 35



Postprocessors
Theorem

If we denote ~ the exotic aromatic B-series such that F(vy) = (A + [£,A,]) and
if v ~ 0, then X, is of order p + 1 for the invariant measure.

Theorem (Conditions for order p using postprocessors)

Order | Tree T Order conditions

2 E Sbici—2Y bid; — 2 b; + 2dp° = —1

U | Shd?—23bidi—Yb+dy =1

Example (first introduced in Leimkhuler, Matthews, 2013)

Xni1 = Xn + hf(X, + \an)+af§n, Xo = Xn + \fgn
Xhn has order 1 of accuracy for the invariant measure, but X,, has order 2.
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Partitioned methods

Problem: solve dX = f(X)dt + cdW with f = f; + f, applying different numerical
treatments for each f;. For example, if f; is stiff and £, is non-stiff, we want to
apply an implicit method to f; and an explicit one to f,.

Theorem
Order | Tree T | F(7)(¢) Order condition
1 ! ¢'h Ybi=1
| on Shi=1
2 I dHh b —2Y bid; — 2 b; +2dp° = —1
E P'fih Zbia—22b;di—ZE—Z§i+2d_o2=—%
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Partitioned methods

Examples (Two methods of order 2)
X1 =Xy + gfl(XnJrl + %U\/ﬂgn) + gfl(XnJrl + %U\/ﬂgn)
+ht (X, + 30 hEn) + ok,
X, =X, + %J\/hiﬁ,,.

It can be put in Runge-Kutta form with s = 0 and dp = % for the postprocessor
and the following Butcher tableau:

) 0[0 0o o0 |0]0 0 012

clale|Ald 1|0 12 12]1]1 0 0|12

5| |3 100 12 12]1]1 0 032
[0 12 12| |1 0 0]

If we add a family of independent noises (), independent of (£,),, we get the
following order 2 method:

Xny1 = Xn + hf(Xpp1 + %U\/EXn) + hha(X, + %U\/Efn) + 0'\/E§na
X, =X, + %a\/hjf,,.
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Isometric equivariance of exotic aromatic B-series

Definition
Affine equivariant map: invariant under an affine coordinates map.
Isometric equivariant map: invariant under an isometric coordinates map.

Local affine equivariant maps are exactly aromatic B-series methods
(Munthe-Kaas, Verdier (2016) and MclLachlan, Modin, Munthe-Kaas, Verdier
(2016))

Exotic aromatic B-series methods are isometric equivariant.

Theorem J

Remark: the converse is ongoing work.
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Summary

e We introduced a new algebraic formalism of exotic aromatic trees to study the
order for the invariant measure of numerical integrators for overdamped Langevin
equation.

e The exotic aromatic forests formalism inherits the properties of the previously
introduced tree formalisms, as a composition law and a universal geometric
property.

o We recover efficient numerical methods (up to order 3), systematic methodology
to improve order and formal simplification of any numerical method that can be
developed in exotic aromatic B-series.

e Possible applications and extensions to more general SDEs where f is not a
gradient or to SDEs of the form

dX = f(X)dt + £Y2dW.

Main reference of this talk:

A. Laurent and G. Vilmart. Exotic aromatic B-series for the study of long time
integrators for a class of ergodic SDEs. Submitted, arXiv:1707.02877, 2017.
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