On controlling the amount of false positives when making multiple tests

Part I: Introduction
(1) Setting

Let $X:(\Omega, \mathcal{F}, \mathbb{P}) \rightarrow(x, X, P)$ observation (may be a vector, matrix, ..) Consider $\left\{\begin{array}{l}P \in P \text { moolel (distribution farnily on }(x, X) \text {) } \\ m \geq 1 \text { null hypotheses on } P: H_{0, j}: P \in P_{0, j}, 1 \leq j \leq m\end{array}\right.$ (Called multiple testing setting)

Parameter of interest is $\quad \theta=\theta(P) \in\{0,1\}^{m}$ defined by $\theta_{j}=0 \Leftrightarrow P \in P_{q j}$ $\left.Y_{0}(P)=3 j \in\{1, \ldots, m\}: \theta_{j}=0\right\}$ set of rave mills
the i th null is time for P

Each Hoy tested with a test statistic $T_{j}(x)$ (expected loge if $\theta_{j}=1$)
Often: each $T_{j}(x)$ transformed into a p-value $P_{j}(x)$
Condition (*) there exists a family $\left(p_{j}(x), 1 \leq j \leq m\right)$ with the property:
$\forall P \in \mathcal{P}, \quad P_{j}(x) \succ_{\text {stack }} U(0,1)$ for each i such that $\theta_{i}=0$
ice. $P\left(p_{j}(x) \leq t\right) \leq t$ for all $t \in[0,1]$
($p_{j}(x), 1 \leq j \leqslant m$) called the p-value family (popery p value pupenty)

Aim: recover θ fum $X,\left(T_{j}(x), 1 \leqslant j \leqslant m\right) \quad$ or $\left(P_{j}(x), 1 \leq j \leqslant m\right)$
(2) Examples (e.g., think about the standard linear model) known or unknown Gaussian case $X_{N} P=W(\mu, \Gamma), \underset{\mu}{\mu} \in \mathbb{R}^{m}, \Gamma \quad m \times m$ covariance matrix unknown with $\Gamma_{j j}=1 \forall j$

* One-sided testing: $\left.\rho_{0, j}=3 P=\Delta(\mu, r): \mu_{j} \leq 0\right\}$ ie $H_{0, j}: " \mu_{j} \leq 0 "$

$$
\theta_{j}=11\left\{\mu_{j}>0\right\} ; \quad T_{j}(x)=x_{j}
$$

$p_{j}(x)=\bar{\Phi}\left(X_{j}\right)$, pour $\bar{\Phi}(x)=\mathbb{P}(z \geqslant x)$ pour $Z \sim N(0,1)$
P-value popaty (x) is of if $\theta_{j}=0, P\left(P_{j}(x) \leqslant t\right)=P(\underbrace{\left(x_{j}\right)}_{\leqslant x_{j}-\mu_{j}} \leqslant t) \leqslant P(\underbrace{\bar{\Phi}\left(x_{j}-\mu_{j}\right)}_{\sim N(0,1)} \leqslant t) \leqslant t$

* Two -sided testing: $P_{9 j}=\left\{P=W(\mu, \Gamma): \mu_{j}=0\right\}$ ie $H_{j}: " \mu_{j}=0 "$

$$
\left.\theta_{j}=113 \mu_{j} \neq 0\right\} ; \quad T_{j}(x)=\left|x_{j}\right| ; p_{j}(x)=2 \Phi\left(\left|x_{j}\right|\right)
$$

$$
\left.=P\left(\mid x_{j}-\mu_{j}\right) \geqslant \overrightarrow{\bar{\Phi}}\left(t_{2}\right)\right)=t x_{j}=\mu_{j} \mid
$$

Two.group cote $\quad X=\left(x^{(2)}, \ldots, X^{(n)}\right) \in \mathbb{R}^{m}=\left(y^{(2)}, \ldots, y^{(n)}, z^{(1)}, \ldots, z^{(n)}\right)$

with $Y^{(i)}=\mu_{0}+\Psi_{i}, 1 \leqslant i \leqslant n_{0} \quad$ with Ψ_{i}, Ψ_{i} 's io $\sim Q$ some centered

$$
Z^{(i)}=\mu_{1}+y_{i}, 1 \leq i \leq n_{1}
$$ distribution on \mathbb{R}^{m} effect group 1

$$
\left.H_{0, j}: " \mu_{0, j}=\mu_{n, j} " \quad(\text { rasus } \neq) \quad ; \quad \theta_{j}=1 R \mu_{0 j} \neq \mu_{1, j}\right\}
$$

$$
T_{j}(x)=\frac{1}{\sqrt{1 / n_{0}+1 / n_{1}}} \frac{\left|\hat{\mu}_{0 j}-\hat{\mu}_{n_{0}}\right|}{\hat{\sigma}_{j}}
$$

Student Stat
Here, only two -sided because we will permute items
where $\hat{\mu}_{0, j}=\frac{1}{n_{0}} \sum_{i=1}^{n_{0}} y_{j}^{(i)}$ and $\hat{\mu}_{A_{j}}=\frac{1}{n_{1}} \sum_{i=1}^{n_{2}} Z_{j}^{(i)}$

* if $Q=W(0, r)$ then $p_{j}(x)=2 \bar{F}\left(T_{j}(x)\right)$ where $\bar{F}(x)=P(Z \geqslant x)$ $Z \sim \tau(n-2)$
conolition (*) on praluer can be checked as before structure
* if Q unknown and arbitrary we cen obtain p-values by permutations!

$$
\left.P_{j}(x)=\frac{1}{B+1}\left(1+\sum_{b=1}^{B} 113 T_{j}\left(x^{\frac{\sigma}{b}}\right) \geqslant T_{j}(x)\right\}\right)
$$

where $\left\lvert\, \begin{array}{llll}\sigma_{1} \ldots \sigma_{B} & \text { ind } \\ \text { uniform on on } & \mathcal{F}_{n}\end{array}\right.$ and $\left.\quad \begin{array}{l}X^{\sigma}=\left(X^{\sigma(1))}, \ldots, X^{(\sigma(n)}\right) \\ \text { matrix } X \text { with the }\end{array}\right)$

$$
\text { achumns permuted by } \sigma
$$

Proposition: condition (*) holds for this p-value family (single permutation testing)
Proof:
if $H_{0 j}$ is true, the n components of $X_{j}=\left(x_{j}^{(i)}\right)_{1 \leq i \leq n}$ are aid $\left(\sim \quad Q_{j}\left(\cdot-\mu_{0 j}\right)=Q_{j}\left(-\mu_{i j}\right)\right.$
hence $\quad X_{j}^{\sigma} \sim X_{j} \quad$ for any $\sigma \in \mathcal{F}_{n}$
As a result, if $H_{0 j}$ is true uniformly distributed on ζ_{n} (taken indie. of the rest)

$$
\left(x_{j}, x_{j}^{\sigma_{1}}, \ldots, x_{j}^{\sigma_{B}}\right) \sim\left(x_{j}^{\sigma}, x_{j}^{\sigma_{i} \sigma \sigma}, \ldots, x_{j}^{\sigma_{B} \sigma \sigma}\right)
$$

(because true because tine on $\left.\sigma_{A} \ldots \sigma_{B}\right)$
con

Hence of $H_{o j}$ is true

$$
\sim\left(x_{j}^{\sigma}, x_{j}^{\sigma_{1}}, \ldots, x_{j}^{\sigma_{B}}\right)
$$

(because true cord on X_{j} and $\left(\sigma, \sigma_{1} \circ \sigma_{1} \ldots, \sigma_{B} \cdot \sigma\right)$

$$
\begin{aligned}
\left(\omega_{0}, U_{1}, \ldots, \omega_{B}\right)= & \left(T_{j}(x), T_{j}\left(x^{\sigma_{1}}\right), \ldots, T_{j}\left(x^{\sigma_{B}}\right)\right) \\
& \sim\left(T_{j}\left(x^{\sigma}\right), T_{j}\left(x^{\sigma_{1}}\right), \ldots, T_{j}\left(x^{\sigma_{B}}\right)\right)_{B}
\end{aligned}
$$

is an exchangeable vector and $p_{j}(x)=\frac{1}{B+1} \sum_{b=0}^{B} 11\left\{U_{b} \geqslant U_{0}\right\}$ rank of U_{0}

$$
\text { in }\left(U_{0}, U_{1}, \ldots, U_{B}\right)
$$

(3) Multiple testing procedure

A multiple testing procedure is sane mesunable function $R:(x, X) \rightarrow$ subsets of $\{1, \ldots, m\}$ " $i \in R(x)$ " means that the null $H_{p i}$ is ryected by R

Thresholding based: reject large test stat. (or small p-values)
with test statistics $R(x)=\left\{j \in\{1, \ldots, m\}: T_{j}(x)>s\right\} \quad$ (mind the strict)
with p-values $\quad R(x)=\left\{j \in\{1, \ldots, m\}: P_{j}(x) \leq t\right\}$
Stopping rule: $\hat{p}(x) \in\{1, \ldots, m\}$ and reject nulls corresponding to $p(1), \ldots, p(\hat{e})$ where $P(1) \leqslant \ldots \leqslant p(m)$ are the ordered p-values

False positives are elements of $H_{0}(P) \cap R$ (wrongly rejected by R)

Curse of multiplicity

$$
\text { of } R=\left\{j \in\{1, \ldots, m\}: p_{j} \leqslant \alpha\right\} \quad \text { (un corrected) }
$$

only noise $\theta_{j}=0$ for all j
and model with p_{j} iid $\sim \Delta(0,1)$ then probability to make a false positive is

$$
P\left(\left|H_{b}(P) \cap R\right| \neq 0\right)=P\left(\exists j \in\{1 \ldots m\}: P_{j} \leqslant \alpha\right)=1-(1-\alpha)^{m}
$$

quickly increasing to 1 as m gross.

Part II: FWER control
(1) FWER and Bonfers on procedure

In a general multiple testing frame wank with $X,(x, X), P \in P, \quad \theta \in \mathbb{R}^{m}, H_{0}(P)$ Let R being a multiple testing procedure $m_{0}(P)=|\mathcal{H}(P)|$ number of 'non signal'

The FWER of R is $\quad F W E R(R, P)=\mathbb{T}\left(\left|R(X) \cap \mathcal{H}_{0}(P)\right| \neq 0\right) \quad \begin{aligned} & \text { probability to make at least } \\ & \text { one false positive }\end{aligned}$
Controlling FWER at level α moons:
for same $\alpha \in(0,1)$. find $R=R \alpha$ with $\forall P \in \mathcal{P}, \operatorname{FWER}(R, P) \leq \alpha$ cosine
chen
The Bonferroni procedure $R^{\text {Bal }}=\left\{1 \leq j \leq m: P_{j}(x) \leq \frac{\alpha}{m}\right\}$
Proposition: consider p-values satisfying $(*)$ in a general multiple testing setting
(i) $\forall P \in P, \operatorname{FWER}\left(R^{\text {bap }}, P\right) \leq \alpha \frac{m_{0}(P)}{m} \leq \alpha$
(ii) I any distribution in $[0,1]^{m}$ with uniform mayinols corresponds under the'fule mule' to the distribution of the p-value family for some $P_{0} \in \rho$ with $\theta\left(P_{0}\right)_{j}=0$ for all j

$$
\sup _{P \in \rho}\left\{F w \in R\left(R^{B M}, P\right)\right\}=\alpha
$$

[Benditkis etal (2015)]
Bout is sharp!

Proof: (i) $\operatorname{FWER}\left(R^{B m}, p\right) \leq \sum_{j=1}^{m}\left(1-\theta_{j}\right) P\left(p_{j}(x) \leq \frac{\alpha}{m}\right) \quad$ by $(x) \leq \frac{\alpha}{m} \sum_{j=1}^{m}\left(1-\theta_{j}\right)=\frac{\alpha}{m} m_{0}$
(ii) Take U_{1}, \ldots, U_{m} id $\sim \Delta(0,1), U_{j}^{\prime}=\frac{j-1+U_{j}}{m} \in\left[\frac{j-1}{m}, \frac{j}{m}\right], 1 \leqslant j \leqslant m$
σ uniform on F_{n} (inolep)
Consider the distribution of $\left(U_{\sigma(j)}^{\prime}, 1 \leq j \leq m\right)$

Byascumptian $\exists P_{0}$ with $\theta_{j}\left(P_{0}\right)=0$ for all j and $\left(P_{j}(x)\right)_{j} \sim\left(U_{\sigma_{j}}^{\prime}\right)_{j}$

To conclude, we write

$$
\begin{aligned}
& \operatorname{FWER}\left(R^{\text {Barf }}, P_{0}\right)=\mathbb{P}\left(\exists j \in\{1, \ldots, m\}: \quad U_{\sigma(j)}^{\prime} \leqslant \frac{\alpha}{m}\right) \\
& =\mathbb{T}\left(\bigcup_{j=1}^{m} \bigcup_{k=1}^{m}\left\{\sigma(j)=k, U_{k}^{\prime} \leqslant \frac{\alpha}{m}\right\}\right) \\
& =\mathbb{P}\left(\bigcup_{k=1}^{m}\left\{U_{k}^{\prime} \leqslant \frac{\alpha}{m}\right\}\right)=\mathbb{P}\left(U_{1}^{\prime} \leqslant \frac{\alpha}{m}\right)=P\left(U_{1} \leqslant \alpha\right) \\
& \sim \sqcup\left(\frac{(k-1)}{m}, \frac{k}{m}\right) \\
& =\alpha \\
& k=2 \ldots \mathrm{~m} \text { impossible }
\end{aligned}
$$

Remark: if P. under the full nell and $p_{j}, 1 \leqslant j \leqslant m$ are independent $\operatorname{FWER}\left(R^{B-1}, P_{0}\right)=1-\left(1-\frac{\alpha}{m}\right)^{m} \cong \alpha \quad$ when α is small so 'almost shay p' under indep.

Lack of adaptiveness for some particular $P_{0} \in \mathcal{P}, F W E R\left(R^{B a f}, P_{0}\right)$ can be much lower than α for instances:

* strong dependence between tests:
full mull gaussian tw-sided case with $\Gamma_{i j}=1$ for all i, j gives $p_{i}(x)=p_{j}(x)$ for all ii hence $\operatorname{FWER}\left(R^{B_{m}}, P_{0}\right)=\frac{\alpha}{m} \quad(\ll \alpha)$
* many signal: $\frac{m_{0}\left(P_{0}\right)}{m}$ not close to 1 provides $\operatorname{FWER}\left(R^{\text {bal }}, P\right) \leq \alpha \frac{m_{0}(P)}{m}$ not close to α

Adaptive control issue
How to build a new threshold $t=t(x)$ that incorporates the dependence or/and $\frac{\mathrm{mo}}{\mathrm{m}}$

$$
\text { with }\left\{\begin{array}{l}
t \text { logger then } \alpha / m \\
\text { FwER still controlled by } \alpha
\end{array}\right.
$$

(Also remember that the dependence con be known or unknown)

