Deep learning for intra prediction: context-adaptive neural networks

Thierry Dumas, Aline Roumy, Christine Guillemot

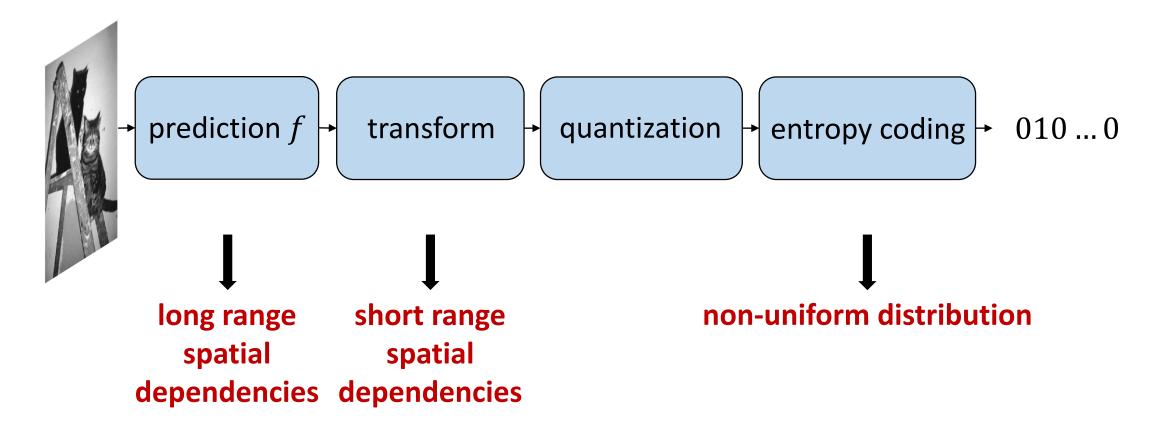
INRIA Rennes, France

Fundamentals of image compression

long range spatial dependencies

short range spatial dependencies

Fundamentals of image compression



From optimal prediction to feasible prediction

optimality

observed random variables $\{X_{n,0}, \dots, X_{n,l-1}\}$, unobserved random variable S_n optimal prediction $\hat{S}_n^* = \mathbb{E}[S_n | X_{n,0}, \dots, X_{n,l-1}] \longrightarrow \text{law costly to transmit}$

practice

- a. define a finite set of laws $\{f_0, \dots, f_{p-1}\}$
- b. find $f = f_i$ on the encoder side
- c. send *i* from the encoder to the decoder
- But p /, transmission cost /
 $\{f_0, \dots, f_{p-1}\}$ linear, representing simple dependencies

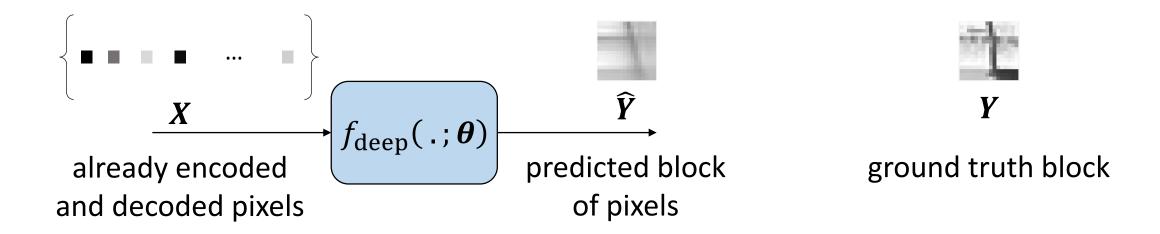
Goal of our work

prediction function f_{deep}

- modeling complex dependencies between pixels
- predicting large unknown regions of pixels

learning deep neural network $f_{\text{deep}}(.; \theta)$

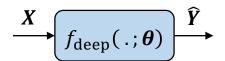
I – Generic neural network based intra prediction



$$\boldsymbol{\theta}^* = \min_{\boldsymbol{\theta}} \mathbb{E}\left[\left\| \boldsymbol{Y} - f_{\text{deep}}(\boldsymbol{X}; \boldsymbol{\theta}) \right\|_2^2 + \lambda \left\| \left[\boldsymbol{\theta} \right]_W \right\|_2^2 \right], \lambda \in \mathbb{R}_+^*$$
weights regularization

II – Challenges of building a deep predictor

ground truth:



• shape of *X*?

raster scanning/Z-scanning 2mm

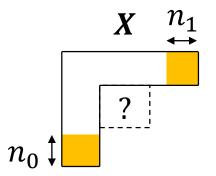
• size of *X*?

size growing linearly

II – Challenges of building a deep predictor

 variable number of available neighboring pixels?

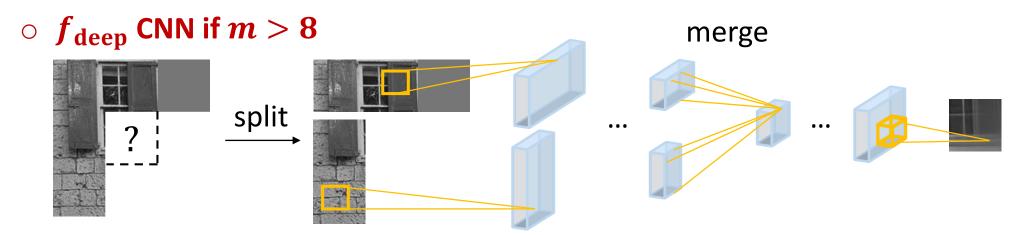
avoid one training per case



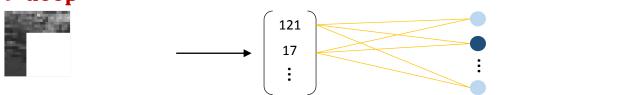
 $n_0, n_1 \sim \mathcal{U}[\![1, m]\!]$ during the training

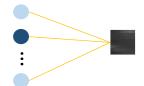
II – Challenges of building a deep predictor

• architecture of f_{deep} ?



 $\circ f_{
m deep}$ fully-connected otherwise

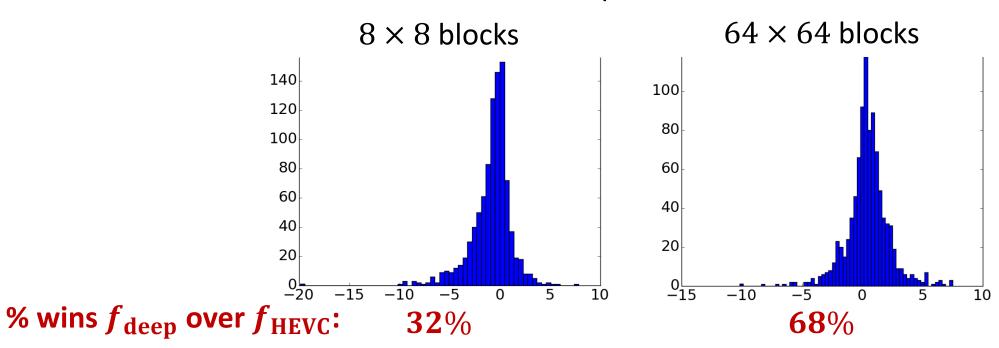




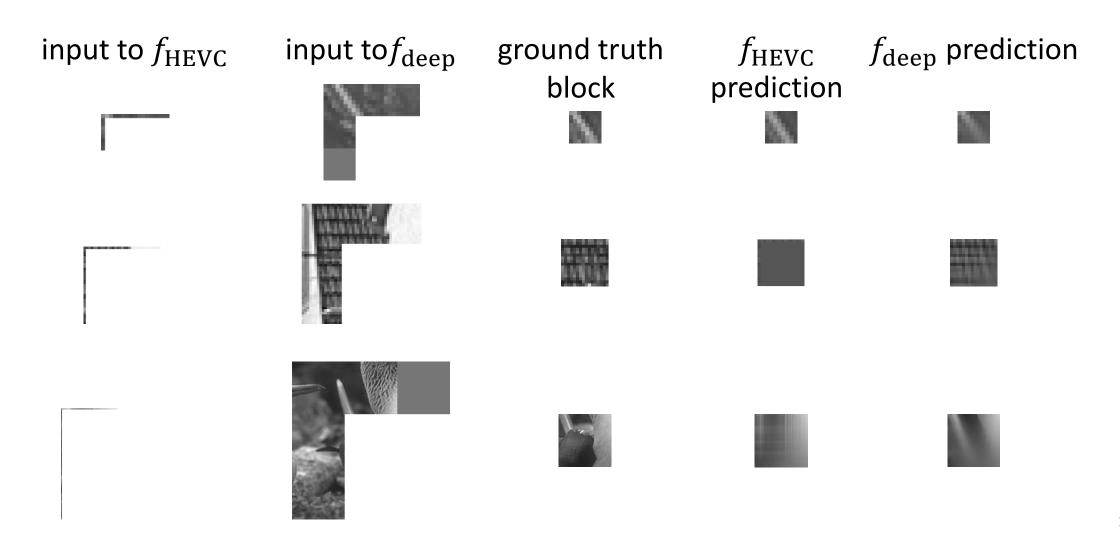
III – Success rate of the neural networks

baseline: best prediction function $f_{\rm HEVC}$ among the 35 HEVC functions.

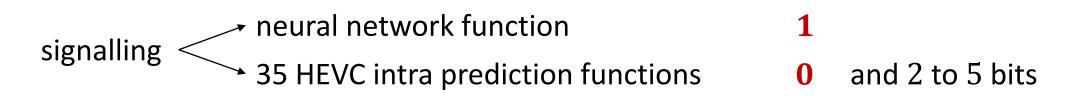
difference in prediction PSNR



IV – Quality of prediction



V – Performance in terms of rate-distortion



bitrate savings of the neural networks w.r.t HEVC for same distortion

video first luminance frame	bitrate saving
Traffic 2560×1600	3.76%
BQTerrace 1920×1080	2.44%
BasketballDrive 1920×1080	5.20%
Cactus 1920 × 1080	3.05%
ParkScene 1920×1080	2.58%
Kimono 1920 × 1080	2.92%
BQSquare 416 × 240	2.21%

IV – Conclusion

- learning an intra prediction function modelling complex dependencies between pixels
- + adapting the function w.r.t:
 - the size of the block to be predicted
 - the number of available neighboring pixels
- computation time
- storage of the neural network parameters (10 million approximatively).

Thanks you for your attention!

For further details,

https://www.irisa.fr/temics/demos/prediction_neural_network/PredictionNeuralNetwork.htm