Convolutional Neural Networks for Signals on Graphs

Vincent Gripon joint work with Carlos Lassance, Bastien Pasdeloup and Jean-Charles Vialatte

Sept. 4th, 2018

Context

- Graph Convolutional Neural Networks may refer to:
 - Graph learning (graph embedding...),
 - Node classification (semi-supervised learning...),
 - Signal on graphs processing (irregular domains...).
- Motivation:

CIFAR-10 dataset

Error rate

- Without structure (MLP): 31%,
- With structure (CNN): 4%.

Context

- Graph Convolutional Neural Networks may refer to:
 - Graph learning (graph embedding...),
 - Node classification (semi-supervised learning...),
 - Signal on graphs processing (irregular domains...).
- Motivation:

CIFAR-10 dataset

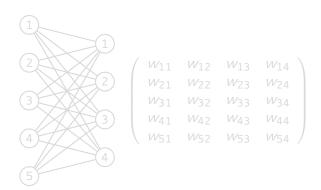
Error rate

- Without structure (MLP): 31%,
- With structure (CNN): 4%.

Convolutional Neural Networks are defined using the underlying (often 2D) vector space. But how to extend to more complex domains with no explicit underlying vector space?

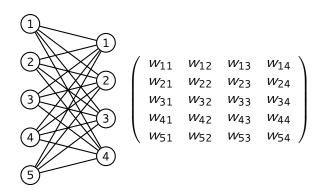
Fully connected layers

$$\mathbf{y}=f(W\mathbf{x}+\mathbf{b})\;,$$

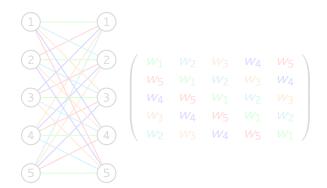


Fully connected layers

$$\mathbf{y} = f(W\mathbf{x} + \mathbf{b}) ,$$

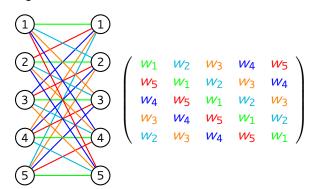


$$\mathbf{y} = f(W\mathbf{x} + \mathbf{b}),$$



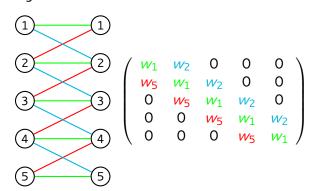
$$\mathbf{y} = f(W\mathbf{x} + \mathbf{b}) ,$$

Weight sharing,



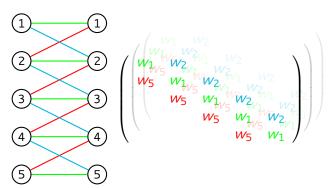
$$\mathbf{y} = f(W\mathbf{x} + \mathbf{b}) ,$$

Weight sharing, localization,



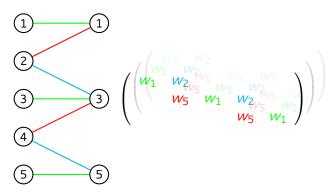
$$\mathbf{y}=f(W\mathbf{x}+\mathbf{b})\;,$$

Weight sharing, localization, feature maps,



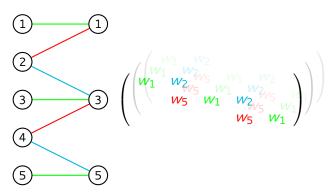
$$\mathbf{y} = f(W\mathbf{x} + \mathbf{b}) ,$$

Weight sharing, localization, feature maps, pooling/strides,



$$\mathbf{y} = f(W\mathbf{x} + \mathbf{b}) ,$$

Weight sharing, localization, feature maps, pooling/strides, data-augmentation.



Existing approaches

Spectral approaches

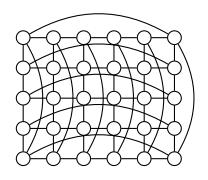
- Use Fourier transform on graphs (eigenspace of Laplacian of the graph),
- Convolution = point-wise multiplication in Fourier domain,
- Learn Fourier domain coefficients of convolutions.

Vertex-domain approaches

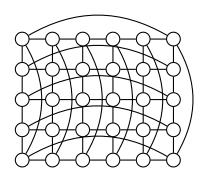
- Design weight-sharing in the vertex domain,
- Use heuristics to map neighbors of vertices,
- Design translations in the vertex domain.

Question: can we generalize CNNs to signals on graphs?

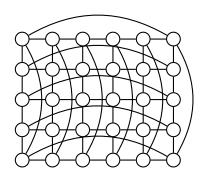
- Sanity check: should perform as well as CNNs on standard signals,
- Generalization: should improve performance compared to MLP on irregular signals.



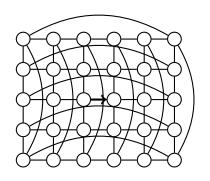
- One-to-one on vertices,
- Neighbors are associated with neighbors,
- Image of a vertex is one of its neighbors.



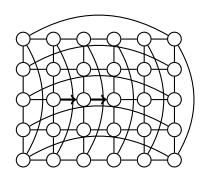
- One-to-one on vertices,
- Neighbors are associated with neighbors,
- Image of a vertex is one of its neighbors.



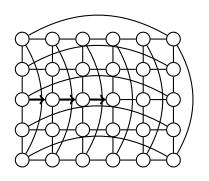
- One-to-one on vertices,
- Neighbors are associated with neighbors,
- Image of a vertex is one of its neighbors.



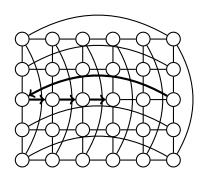
- One-to-one on vertices,
- Neighbors are associated with neighbors,
- Image of a vertex is one of its neighbors.



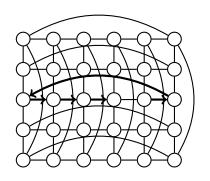
- One-to-one on vertices,
- Neighbors are associated with neighbors,
- Image of a vertex is one of its neighbors.



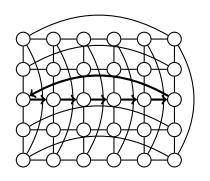
- One-to-one on vertices,
- Neighbors are associated with neighbors,
- Image of a vertex is one of its neighbors.



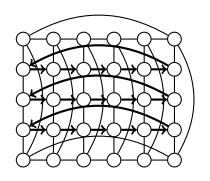
- One-to-one on vertices,
- Neighbors are associated with neighbors,
- Image of a vertex is one of its neighbors.



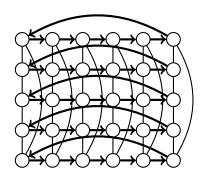
- One-to-one on vertices,
- Neighbors are associated with neighbors,
- Image of a vertex is one of its neighbors.



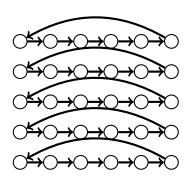
- One-to-one on vertices,
- Neighbors are associated with neighbors,
- Image of a vertex is one of its neighbors.



- One-to-one on vertices,
- Neighbors are associated with neighbors,
- Image of a vertex is one of its neighbors.



- One-to-one on vertices,
- Neighbors are associated with neighbors,
- Image of a vertex is one of its neighbors.

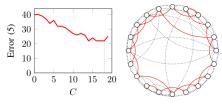


- One-to-one on vertices,
- Neighbors are associated with neighbors,
- Image of a vertex is one of its neighbors.

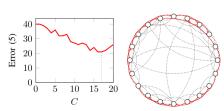
Experiments on small-world nets



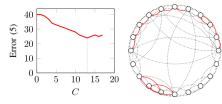
(a) P = 0.1, first pseudo-translation found for C = 18.



(c) P=0.1, third pseudo-translation found for C=18.

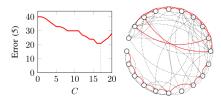


(b) P=0.1, second pseudo-translation found for C=17.

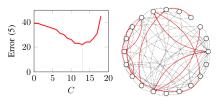


(d) P = 0.1, fourth pseudo-translation found for C = 13.

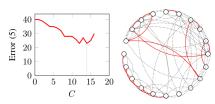
Experiments on small-world nets



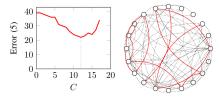
(a) P = 0.3, first pseudo-translation found for C = 17.



(c) P=0.5, first pseudo-translation found for C=13.



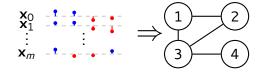
(b) P=0.3, third pseudo-translation found for C=14. The second pseudo-translation found was the inverse of the first.



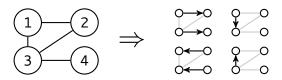
(d) P=0.5, second pseudo-translation found for C=12.

From translations to Conv. Nets

Step 0: infer a graph

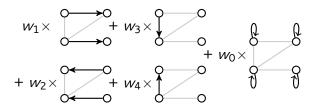


Step 1: infer translations

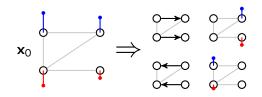


From translations to Conv. Nets

Step 2: design convolution weight-sharing

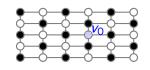


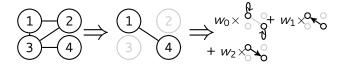
Step 3: design data-augmentation



From translations to Conv. Nets

Step 4: design graph subsampling and convolution weight-sharing



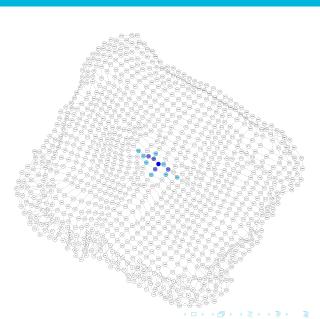


Sanity check: scrambled CIFAR-10 experiments

- 10 categories,
- 60'000 examples,
- 10'000 tests.

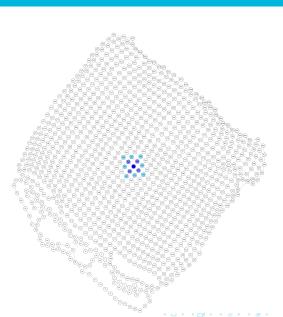
Graph inference

Scrambled CIFAR-10 thresholded empirical covariance matrix



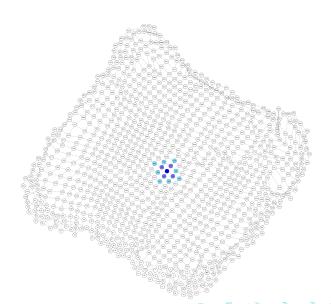
Graph inference

Scrambled CIFAR-10 smooth (Kalofolias et al.)



Graph inference

Scrambled CIFAR-10 smooth and stationary



Results

Scrambled CIFAR-10 (Toy architecture, no DA)

			Stationary		
56.74%	85.03%	85.33%	85.81%	85.98%	69%

Results

Scrambled CIFAR-10 (Toy architecture, no DA)

			Stationary		
56.74%	85.03%	85.33%	85.81%	85.98%	69%

Scrambled CIFAR-10 (ResNet)

Support	MLP	U-CNN	Grid Graph		Covariance Graph	
Заррогс			Defferard et al, 2016	Proposed	Proposed	Pasdeloup et al, 2017
Full Data Augmentation	78.62%	93.80%	85.13%	93.94%	92.57%	-
Data Augmentation - Flip		92.73%	84.41%	92.94%	91.29%	-
Graph Data Augmentation				92.81%	91.07%	-
None	69.62%	87.78%		88.83%	85.88%	82.52%

Results

Scrambled CIFAR-10 (Toy architecture, no DA)

CNN			Stationary		
56.74%	85.03%	85.33%	85.81%	85.98%	69%

Scrambled CIFAR-10 (ResNet)

Support	MLP	U-CNN	Grid Graph		Covariance Graph	
Зарроге			Defferard et al, 2016	Proposed	Proposed	Pasdeloup et al, 2017
Full Data Augmentation	78.62%	93.80%	85.13%	93.94%	92.57%	-
Data Augmentation - Flip		92.73%	84.41%	92.94%	91.29%	-
Graph Data Augmentation		_		92.81%	91.07%	-
None	69.62%	87.78%		88.83%	85.88%	82.52%

Pines fMRI dataset

Graph		None	Neighborhood Graph		
Method	MLP CNN (kernel 1x1)		Defferard et al, 2016	Proposed	
Accuracy	82.62%	84.30%	82.80%	85.08%	

Conclusion

- Extension of regular CNNs to irregular domains,
- Promising results on toy datasets,
- Comprehensible technique with lots of theorems.

Ongoing/future work

- Challenging datasets (including highly nonregular),
- Weighted graphs to infer translations,
- Computation bottleneck of finding translations.

- "Characterization and inference of graph diffusion processes from observations of stationary signals"
- "Translations on graphs with neighborhood preservation"
- Matching Convolutional Neural Networks without Priors about Data",

Conclusion

- Extension of regular CNNs to irregular domains,
- Promising results on toy datasets,
- Comprehensible technique with lots of theorems.

Ongoing/future work

- Challenging datasets (including highly nonregular),
- Weighted graphs to infer translations,
- Computation bottleneck of finding translations.

- "Characterization and inference of graph diffusion processes from observations of stationary signals"
- "Translations on graphs with neighborhood preservation"
- "Matching Convolutional Neural Networks without Priors about Data".

Conclusion

- Extension of regular CNNs to irregular domains,
- Promising results on toy datasets,
- Comprehensible technique with lots of theorems.

Ongoing/future work

- Challenging datasets (including highly nonregular),
- Weighted graphs to infer translations,
- Computation bottleneck of finding translations.

- "Characterization and inference of graph diffusion processes from observations of stationary signals"
- "Translations on graphs with neighborhood preservation"
- "Matching Convolutional Neural Networks without Priors about Data".

Conclusion

- Extension of regular CNNs to irregular domains,
- Promising results on toy datasets,
- Comprehensible technique with lots of theorems.

Ongoing/future work

- Challenging datasets (including highly nonregular),
- Weighted graphs to infer translations,
- Computation bottleneck of finding translations.

https://github.com/brain-bzh/MCNN

"Characterization and inference of graph diffusion processes from observations of stationary signals"

"Translations on graphs with neighborhood preservation"

Matching Convolutional Neural Networks without Priors about Data",

Conclusion

- Extension of regular CNNs to irregular domains,
- Promising results on toy datasets,
- Comprehensible technique with lots of theorems.

Ongoing/future work

- Challenging datasets (including highly nonregular),
- Weighted graphs to infer translations,
- Computation bottleneck of finding translations.

https://github.com/brain-bzh/MCNN

"Characterization and inference of graph diffusion processes from observations of stationary signals"

"Translations on graphs with neighborhood preservation"

Matching Convolutional Neural Networks without Priors about Data"

Conclusion

- Extension of regular CNNs to irregular domains,
- Promising results on toy datasets,
- Comprehensible technique with lots of theorems.

Ongoing/future work

- Challenging datasets (including highly nonregular),
- Weighted graphs to infer translations,
- Computation bottleneck of finding translations.

https://github.com/brain-bzh/MCNN

"Characterization and inference of graph diffusion processes from observations of stationary signals"

"Translations on graphs with neighborhood preservation"

Matching Convolutional Neural Networks without Priors about Data"

Conclusion

- Extension of regular CNNs to irregular domains,
- Promising results on toy datasets,
- Comprehensible technique with lots of theorems.

Ongoing/future work

- Challenging datasets (including highly nonregular),
- Weighted graphs to infer translations,
- Computation bottleneck of finding translations.

- "Characterization and inference of graph diffusion processes from observations of stationary signals"
- "Translations on graphs with neighborhood preservation"
- "Matching Convolutional Neural Networks without Priors about Data"