Audio-based metric learning for artist disambiguation in large music catalogs

Jimena Royo-Letelier, Romain Hennequin, Viet-Anh Tran, Manuel Moussallam

Deep learning workshop: From theory to applications

September 5th, 2018 - Rennes

Large catalogs

Music streaming/automated music recommendation became central for music consumption

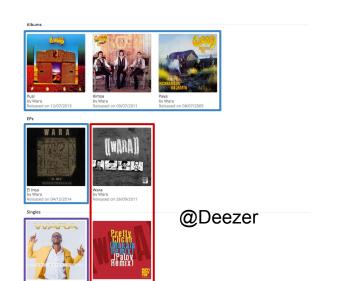
- Ever evolving, large music databases (catalogs)
 - millions of artists
 - tens of millions of tracks
 - tens of thousands new tracks ingested every day

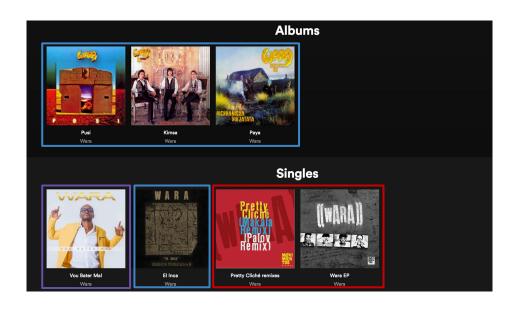
Global identifiers

Dealing with such large database needs **global identifiers**:

- ISRC describes <u>recordings</u> (supposedly) uniquely
- **UPC** describes <u>albums</u> (supposedly) uniquely
- For <u>artists</u>... huh?
 - → Lack of an **universal** and **reliable** mean to identify music artists

And then ...





@some competitor (Visited on 06/07/2018)

Wara music group page

Artist name is used as an identifier:

- → Confusing / unpleasant catalog exploration for end users
- → May induce bad quality suggestions when notion of artist used for recommendation

Automatic artists disambiguation

- Given a group of recordings associated to the same artist name, identify actual artists.
- May be solved using **metadata** (release dates, titles language, record labels, etc.) but these are not always available nor reliable.
 - → Rely (at least partially) on **audio** content

A totally optimized system should use all possible sources

What is an artist?

Loosely defined notion:

- Usually the main performer/band that plays a song
- Sometimes there may be several ones
- Can be sometimes the composer (mainly in classical music)
- Can be the music producer (mainly in electronic music)

=> what the provider (record label) want to put in it...

What is an artist?

Can be ambiguous at the audio level, but there should be similarity:

- Singer timber
- Instrumentation
- Characteristic instrument licks
- Lyrical content
- Production
- ...

Very diverse characteristics of audio are involved.

Automatic artists disambiguation

Difficult problem because:

- Variability across tracks/albums from a same artist
- Acoustics similarities (genre/mood/orchestration) between different artists

Contemporary latin music

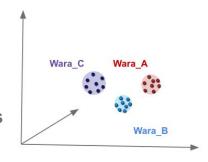
Bolivian rock-folk band

Afro pop singer

Audio clustering problem

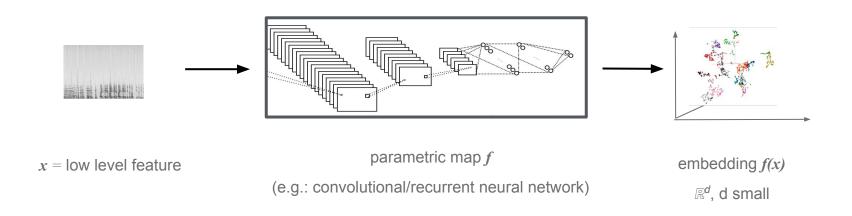
In Music Information Retrieval (MIR) literature:
Usually addressed as classification of already known artists [Berenzweig et. al 2003], [Eghbal-Zadeh et al. 2015]... → not a real case scenario (new artists are added every day)

- Ideal system
 - → distinguish and group recordings from the same artist
 - → unbalanced clustering problem with unknown number of clusters



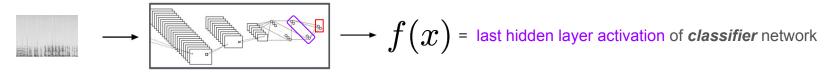
- Try to learn *tailored representations* from audio *for clustering task*
 - → representations of tracks from the same (resp. different) artists must be close (resp. far) in space

• Representation space (**embedding**) creation by directly learning a **parametric map** from input to representation



 Learn a low dimensional space that represents high-level characteristics of audio content in which proximity may be interpreted as some kind of similarity.

Intermediary classifier activations



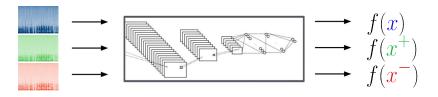
f = conv. neural network

train system with cross-entropy loss

Done for artists classification in [Park et al. 2017], used as baseline.

=> provides a representation optimized for classification (linear separation) not clustering.

Metric Learning



Impose metric through distance of positive/negative pairs: triplet loss (used for face detection [Schroff et al. 2015])

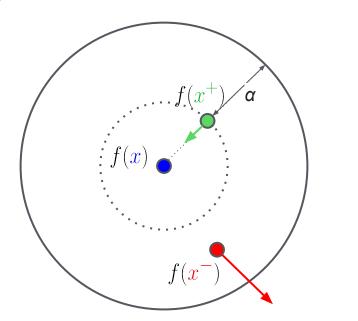
$$\mathcal{L}(\mathcal{X}) = \left| \left\| f(x) - f(x^{+}) \right| \right|_{2}^{2} - \left\| f(x) - f(x^{-}) \right| \right|_{2}^{2} + \alpha \Big|_{+}$$

sampled triplets:
$$\mathcal{X} = (x, x^+, x^-)$$

positive example negative example same artist different artist

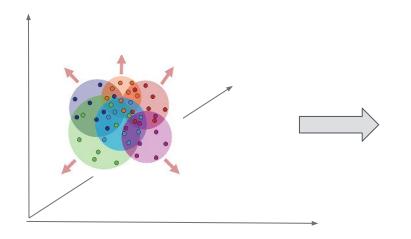
Metric Learning

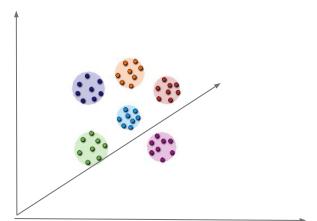
$$\mathcal{L}(\mathcal{X}) = \left| \left\| f(x) - f(x^{+}) \right\|_{2}^{2} - \left\| f(x) - f(x^{-}) \right\|_{2}^{2} + \alpha \right|_{+}$$



Metric Learning

$$\mathcal{L}(\mathcal{X}) = \left| \| f(x) - f(x^{+}) \|_{2}^{2} - \| f(x) - f(x^{-}) \|_{2}^{2} + \alpha \right|_{+}$$





Metric Learning

- Objective function designed to get a good representation for clustering.
- Dynamic sampling for learning: favor hard vs semi-hard triplet.
- Possibility to add side information (e.g. tags, usage data) to guide learning.
 - Take advantage of music hierarchical organisation for smart sampling:
 - → favor positive pairs from **different albums**
 - → favor negative pairs from **same genre**
- Issues: dynamic sampling may result in instabilities and mode collapse.

Evaluation

Not manually checked training dataset:

- Several thousands artists
- Used for training embedding map

Homonym artists dataset used as test dataset:

- 122 groups of 2 to 4 homonym artists.
- Clustering of albums of group of artists with the same name.

Agglomerative hierarchical clustering:

- No need of previous knowledge about number of different artists
- Cross-validation to set flat clusters threshold
- Performance evaluated with Rand index (probability that two clusterings agree on a randomly chosen pair) adjusted for chance.

Systems Performances Evaluation

Table 1. Mean ARI performances of the metric learning and classification embedding systems on the artist clustering task (5-fold cross-validation) for *Balanced* experiment.

	25	50	100	200	400	600
CL	0.32	0.32	0.35	0.47	0.54	0.60
ML	0.45	0.56	0.52	0.56	0.60	0.58

=> Metric Learning performs better with less artists in the training set.

Systems Performances Evaluation

Table 2. Mean ARI performances of the metric learning embedding systems on the artist clustering task (5-fold cross-validation) unbalanced (left) and Side information (right) experiments.

CL A	CL B	ML 1079	ML 3023	ML 3023 genre
0.54	0.47	0.62	0.55	0.64

=> Dynamic sampling compensates for data unbalance

Disambiguating Music Artists at Scale with Audio Metric Learning J. Royo-Letelier, R. Hennequin, V-A. Tran, M. Moussallam To be published at Ismir 2018

Systems Performances Evaluation

Table 2. Mean ARI performances of the metric learning embedding systems on the artist clustering task (5-fold cross-validation) unbalanced (left) and Side information (right) experiments.

CL A	CL B	ML 1079	ML 3023	ML 3023 genre
0.54	0.47	0.62	0.55	0.64

=> Incorporation of side information provides better representation for artist discrimination

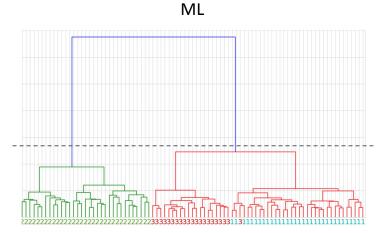
Disambiguating Music Artists at Scale with Audio Metric Learning J. Royo-Letelier, R. Hennequin, V-A. Tran, M. Moussallam To be published at Ismir 2018

Qualitative clustering results

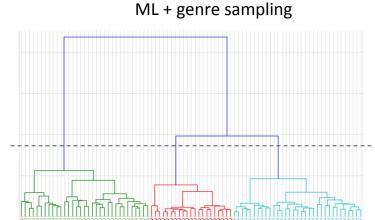
Eclipse 1

Eclipse 2

Eclipse 3



Clustering threshold



Take away

- Artist disambiguation from audio:
 - → useful task in a real life scenario
 - → improvement in the quality of large sized catalogs
- Addressed as representation learning + unsupervised clustering task
- Still work to do!

Next

- Leverage other information for guiding training (album covers, listening data, etc.)
- Scale evaluation
- Artist ambiguity is not only about homonymy but also about synonymy (different name for a same artist).
- Best of both representation systems: learn jointly metric learning and classification system
 - → regularization for ML
 - → sampling strategies for CL

Thanks!

[Berenzweig et. al 2003] A. Berenzweig, D. P. W. Ellis, and S. Lawrence. Anchor space for classification and similarity measurement of music. In International Conference on Multimedia and Expo (ICME), volume 1, pages I–29–32, 2003.

[Eghbal-Zadeh et al. 2015] Hamid Eghbal-Zadeh, Bernhard Lehner, Markus Schedl, and Gerhard Widmer. I-vectors for timbrebased music similarity and music artist classification. In ISMIR, pages 554–560, 2015.

[Park et al. 2017] Jiyoung Park, Jongpil Lee, Jangyeon Park, Jung-Woo Ha, and Juhan Nam. Representation learning of music using artist labels. CoRR, abs/1710.06648, 2017.

[Schroff et al. 2015] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding for face recognition and clustering. In CVPR, pages 815–823. IEEE Computer Society, 2015.