Weakly Supervised Representation Learning for Audio-Visual Events

Sanjeel Parekh 12 Slim Essid 2 Alexey Ozerov 1 Ngoc Duong 1 Patrick Pérez 1 Gaël Richard 2

¹Technicolor, France

²Télécom ParisTech, Université Paris-Saclay, France

September 2018

Goal

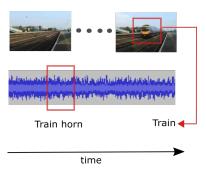
Given a video of an audio-visual event (AV)

al-dipartice and the differential polynomial free last of the size of an area of f of the property operations for the first operation of the size of the first of the size of the size of the size of

time

Goal

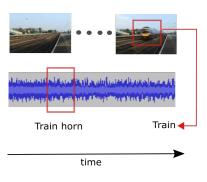
Given a video of an audio-visual event (AV)



- Which AV event has occurred?
- Where is the visual object/context that distinguishes the event?
- When does the sound event occur?

Goal

Given a video of an audio-visual event (AV)



- Which AV event has occurred?
- Where is the visual object/context that distinguishes the event?
- When does the sound event occur?

- Events in the two modalities may be asynchronous
- Only video-level labels available, without any timing information

Related Works

Object Localization and Classification

- Embedding multiple instance learning (MIL) strategies in CNN architectures (Oquab et al., 2015; Zhou et al., 2016; Kolesnikov and Lampert, 2016)
- MIL over extracted region proposals
 (Bilen and Vedaldi, 2016; Kantorov et al., 2016; Gkioxari et al., 2015)

Related Works

Object Localization and Classification

- Embedding multiple instance learning (MIL) strategies in CNN architectures (Oquab et al., 2015; Zhou et al., 2016; Kolesnikov and Lampert, 2016)
- MIL over extracted region proposals
 (Bilen and Vedaldi, 2016; Kantorov et al., 2016; Gkioxari et al., 2015)

Audio Event Detection

- Recent progress accelerated by introduction of large datasets e.g. AudioSet by Google (Gemmeke et al., 2017)
- Success of deep MIL and attention-based methods for audio (Xu et al., 2017; Kumar et al., 2017)

Related Works

Object Localization and Classification

- Embedding multiple instance learning (MIL) strategies in CNN architectures (Oquab et al., 2015; Zhou et al., 2016; Kolesnikov and Lampert, 2016)
- MIL over extracted region proposals
 (Bilen and Vedaldi, 2016; Kantorov et al., 2016; Gkioxari et al., 2015)

Audio Event Detection

- Recent progress accelerated by introduction of large datasets e.g. AudioSet by Google (Gemmeke et al., 2017)
- Success of deep MIL and attention-based methods for audio (Xu et al., 2017; Kumar et al., 2017)

Multimodal Deep Learning

- Two-stream architectures (nonlinear feature-space transformation methods)
 (Becker and Hinton, 1992; Aytar et al., 2016; Aytar et al., 2017; Arandjelović and Zisserman, 2017; Andrew et al., 2013; Ngiam et al., 2011),
- Cross-modal architectures
 (Yuhas et al., 1989; Owens et al., 2016a; Owens et al., 2016b)

Proposed Approach

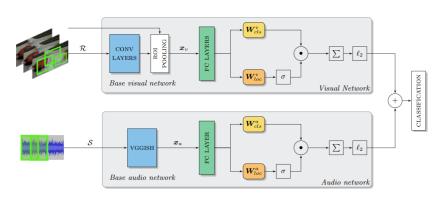
Key Idea: Propose and Learn

- Consider each video to be a bag of class-agnostic audio and visual proposals
- Extract features and transform them to score each according to their relevance for a particular class

Proposed Approach

Key Idea: Propose and Learn

- Consider each video to be a bag of class-agnostic audio and visual proposals
- Extract features and transform them to score each according to their relevance for a particular class



Proposed Approach

Given a set of N training videos and labels, $\{V^{(n)}, y^{(n)}\}$, both modules are jointly trained using multilabel hinge loss

$$L(w) = \frac{1}{CN} \sum_{n=1}^{N} \sum_{c=1}^{C} \max \left(0, 1 - y_c^{(n)} \phi_c(V^{(n)}; w) \right). \tag{1}$$

Experiments

- We use the DCASE smart cars challenge data, which is a subset of AudioSet
 - Multi-label dataset with 51,172 training samples, 488 validation and 1103 testing samples
 - 17 classes spread over vehicle sounds (e.g. bus, car, truck) and warning sounds (e.g. car alarm, civil defense siren)

Experiments

- We use the DCASE smart cars challenge data, which is a subset of AudioSet
 - Multi-label dataset with 51,172 training samples, 488 validation and 1103 testing samples
 - 17 classes spread over vehicle sounds (e.g. bus, car, truck) and warning sounds (e.g. car alarm, civil defense siren)
- Baselines
 - 1. Visual-only network (Bilen and Vedaldi, 2016)
 - 2. Audio-only network
 - 3. AV One-Stream Architecture using a log-sum-exponential operator
 - Attention-based CVSSP system (Xu et al., 2017): DCASE smart cars challenge winner; uses no external data

Audio Event Classification Results

System	F1	Precision	Recall	
Proposed AV Two Stream	64.2	59.7	69.4	
TS Audio-Only	57.3	53.2	62.0	
TS Video-Only	47.3	48.5	46.1	
TS Video-Only WSDDN-Type (Bilen and Vedaldi, 2016)	48.8	47.6	50.1	
AV One Stream	55.3	50.4	61.2	
CVSSP - Fusion system (Xu et al., 2017) CVSSP - Gated-CRNN-logMel (Xu et al., 2017)	55.6 54.2	61.4 58.9	50.8 50.2	

• Significantly advance state-of-the-art for event classification

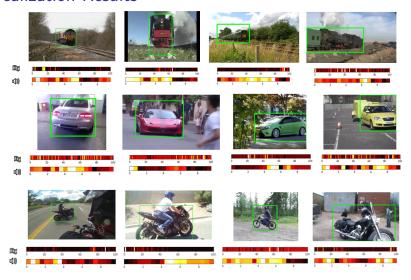
Audio Event Classification Results

System	F1	Precision	Recall		
Proposed AV Two Stream	64.2	59.7	59.7 69.4		
TS Audio-Only	57.3	53.2	62.0		
TS Video-Only	47.3	48.5	46.1		
TS Video-Only WSDDN-Type (Bilen and Vedaldi, 2016)	48.8	47.6	50.1		
AV One Stream	55.3	50.4	61.2		
CVSSP - Fusion system (Xu et al., 2017) CVSSP - Gated-CRNN-logMel (Xu et al., 2017)	55.6 54.2	61.4 58.9	50.8 50.2		

System	Vehicle Sounds							Warning Sounds									
	bik	bus	car	car-pby	mbik	skt	trn	trk	air-hrn	amb	car-alm	civ-def	f-eng	pol-car	rv-bps	scrm	trn-hrn
Proposed AV TS	75.7	54.9	75.0	34.6	76.2	78.6	82.0	61.5	40.0	64.7	53.9	80.4	64.4	49.2	36.6	81.1	47.1
TS Audio-Only	42.1	38.8	69.8	29.6	68.9	64.9	78.5	44.0	40.4	58.2	53.0	79.6	61.0	51.4	42.9	72.1	46.9
TS Video-Only	72.5	52.0	61.2	15.0	54.1	64.2	73.3	49.7	12.0	33.9	13.5	68.6	46.5	19.8	21.8	44.1	32.1
AV OS	68.2	53.6	74.1	25.6	67.1	74.4	82.8	52.8	28.0	54.7	20.6	76.6	60.4	56.3	18.8	49.4	36.2
CVSSP - FS	40.5	39.7	72.9	27.1	63.5	74.5	79.2	52.3	63.7	35.6	72.9	86.4	65.7	63.8	60.3	91.2	73.6

- Significantly advance state-of-the-art for event classification
- Audio-visual complementarity

Localization Results



Video of localization examples
 We can effectively deal with unsynchronized events

Summary

- Proposal-based formulation allows for symmetric treatment of both modalities through MIL
- Established effectiveness of multimodal approach: AV complementarity and tackling asynchronous events
- Ongoing work on designing task-specific proposals for problems such as audio source separation

Thank you!