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Demo

This work is joint with Xavier Caruso and Tristan Vaccon.

I will begin with a demonstration of the method. Throughout the talk
I’ll be using Qp as an example, but the methods apply to any complete
discrete valuation field.
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Interval arithmetic

Sage, and most other p-adic systems, normally tracks precision by
attaching it to each element and propagating it through arithmetic.

Interval arithmetic

The absolute precision of pvu + O(pN) is N, and the relative
precision is N − v.

The absolute precision of the sum or difference of two numbers
is the minimum of their absolute precisions.

The relative precision of the product of quotient of two number
is the minimum of their relative precisions.

Standard because you get provably correct results, and the precision
behavior is often better than R.
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Floating point

Problem: sometimes you lose all your precision, especially if you
ignore numerical stability. Can emulate methods over R and drop
precision tracking completely.

Floating point arithmetic
Pick a finite collection of representable numbers, e.g. pvu for
−M ≤ v ≤ M and 0 ≤ u ≤ pN and define arithmetic operations to
yield the closest representable number to the true answer.

Can sometimes mathematically analyze precision and show that the
result is more precise than what interval arithmetic would predict. But
without this work, floating point calculations have no guarantees.
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Lattices

Interval arithmetic is optimal if you consider precision to be an
attribute of an individual number. But we can do better if we allow
precision data to incorporate relationships between variables.

Given n variables, we will think about their values as a vector in a
n-dimensional vector space E. A lattice H ⊂ E is a bounded
sub-Zp-module which generates E over Qp. In practice, it’s just the
Zp-span of n vectors. For example, the ball of radius r > 0 around the
origin is a lattice, as is the diagonal lattice spanned by

(pm1 , 0, . . . , 0),

(0, pm2 , . . . , 0),

...

(0, 0, . . . , pmn).

An approximate element of E takes the form x+H for some lattice H.
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Lattice example

Suppose x = 4 + O(36) and y = 2 + O(34). Set u = x + y and
v = x − y. Then the precision of (x, y) is

(36, 0)Z3 + (0, 34)Z3,

and the precision of (u, v) is obtained by multiplying by
(
1 1
1 −1

)
:

L = (36, 36)Z3 + (34,−34)Z3 = (0, 36)Z3 + (34,−34)Z3.

This lattice is not diagonal: the smallest diagonal lattice containing it
is (34, 0)Z3 + (0, 34)Z3, corresponding to the fact that u and v have
absolute precision 4 in interval arithmetic. But if you compute
r = u + v = 2x and s = u − v = 2y then (r, s) has precision lattice

(0, 2 · 34)Z3 + (36,−36)Z3 = (36, 0)Z3 + (0, 34)Z3.
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The precision lemma (Caruso-R-Vaccon)

Using lattices to track precision is optimal in the following sense:

Lemma
Let E and F be two finite dimensional normed vector spaces over Qp

and f : U → F be a function defined on an open subset U of E.
Suppose f is differentiable at x ∈ U and d fx is surjective. Then for
sufficiently small H,

f (x + H) = f (x) + d fx(H).

The required size on H depends on the magnitude of the higher
derivatives, and is computable for concrete f . We also show variants
for maps between p-adic manifolds and infinite dimensional Banach
spaces.
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Representing lattices

We represent a precision lattice using an upper triangular matrix,
whose rows give a basis for the lattice.

We scale the diagonal entries to be powers of p.

Note that lattices are exact, since we may use row operations to
reduce each column modulo the power of p on the diagonal.
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Adding and deleting variables

Adding a variable via arithmetic: w = f(v_1,. . .v_n). We
add a new column with entries given by ∂ f

∂vi
.

The resulting matrix is no longer square.
In one model (ZpLF) we allow such submodules (at the cost of
working with inexact objects).
In the other model (ZpLC) we add a new row (0, . . . , 0, pC) for
some cap C.

Introducing a constant or input: w = R(value, prec). We
add a column of zeros, possibly capped by a new row’s pC .

Deleting a variable: delete the corresponding column,
re-echelonize, then delete a row of zeros at the bottom.



Methods of Precision Tracking Implementation Applications

Complexity

Tracking precision this way requires storing a matrix with
number of columns equal to the number of variables, and
number of rows either the number of variables (ZpLC) or the
number of input variables (ZpLF).

The size of the entries is bounded by pC , where C is the precision
cap (ZpLC) or the precision of floating point arithmetic (ZpLF).

Adding variables requires O(nr) operations, where n is the arity
of the operation (often 2) and r is the current number of rows.

Deleting a variable requires O(z2) operations (ZpLC), where z is
the number of columns to the right of the deleted column. In
practice negligible due to temporal locality; ZpLF is even better.

In an algorithm with complexity c, input/output size s and
memory usage m ≈ s +

√
c, tracking precision using with ZpLC

takes O(sc) operations; with ZpFL O(c3/2 + sc).
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Correctness and optimality

Our current implementation does not check the smallness
condition required to apply the precision lemma, so the results
are not provably correct.

The precision cap can reduce the precision of the result, but this
is checkable a fortiori.

Can quantify the amount of precision lost by checking precision
on individual variables. If H ⊂ E is a lattice and πi : E → Qpei

are projections onto the variables, the number of diffused digits
of precision is the length of H0/H, where
H0 = π1(H) ⊕ · · · ⊕ πn(H).
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Further demo

Back to Sage!
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