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Boundary-adapted random wave model



Berry’s Random Wave Model

Random monochromatic waves [Berry 1977]: centred isotropic Gaussian
random field u : R2 → R described by the covariance function

E[u(x) · u(y)] = J0(||x− y||), x, y ∈ R2.



Berry’s Random Wave Model

Zero density (in this isotropic case):

Ku
1 (x) = ϕu(x)(0) · E[∥∇u(x)∥

∣∣u(x) = 0] ≡ 1

2
√
2
.

Nodal length restricted to a radius-R disc B(R): L(u;R).
Expected nodal length (Kac-Rice formula):

E[L(u;R)] =
∫

B(R)

Ku
1 (x)dx =

1

2
√
2
·Area(B(R)).

Asymptotic law for the variance [Berry 2002] (Kac-Rice formula):

Var(L(u;R)) = 1

256
·R2 logR+O(R2).

smaller than the heuristic prediction Var(L(u;R)) ≈ R3, “Berry’s cancellation”
of the leading non-oscillatory term of the 2-point correlation function.



Boundary-adapted random wave model

[Berry 2002] studied the effect of the Dirichlet condition on a boundary
{(x1, x2) : x2 = 0} ⊆ R2 both in its vicinity and far away from it.

Boundary-adapted (non-stationary) random waves: v : R× R>0 → R is the
limit, as J → ∞, of the superposition

2√
J

J∑
j=1

sin(x2 sin(θj)) · cos(x1 cos(θj) + ϕj)

of J plane waves forced to vanish at x2 = 0.

v is the centred Gaussian field with covariance function

rv(x, y) := E[v(x) · v(y)] = J0(∥x− y∥)− J0(∥x− ỹ∥),

x = (x1, x2), y = (y1, y2), ỹ = (y1,−y2) (mirror symmetry relatively to x axis).

The law is invariant w.r.t. horizontal shifts v(·, ·) 7→ v(a+ ·, ·), a ∈ R, but not
the vertical shifts.



ru(x, y) = J0(||x− y||), rv(x, y) = J0(∥x− y∥)− J0(∥x− ỹ∥),

▶ in the range x2, y2 → ∞, rv(x, y) ≈ J0(∥x− y∥) at infinity the boundary
has a small impact

▶ the decay of the error term is slow and of oscillatory nature
▶ it takes its toll on the nodal bias

as x2 → 0, the zero density of v, depending on the height x2 and
independent of x1 by the invariance, is s.t.

Kv
1 (x) = Kv

1 (x2) →
1

2π
<

1

2
√
2
= Ku

1 (x).

Berry attributed this nodal deficiency to the a.s. orthogonality of the
nodal lines touching the boundary [Cheng, 1976].



▶ As x2 → ∞,

Kv
1 (x2) =

1

2
√
2
·
(
1 +

cos(2x2 − π/4)√
πx2

− 1

32πx2
+ E(x2)

)
.

A natural choice for expanding domains are the rectangles

DR := [−1, 1]× [0, R], R→ ∞,

Kac-Rice formula:

E[L(v;DR)] =
1

2
√
2
·Area(DR)−

1

32
√
2π

logR+O(1)

logarithmic nodal deficiency.

Local effect of the perpendicular intersection of the nodal line with the
boundary + negative excess term infinitely many wavelengths away from the
boundary.

The logarithmic fluctuations in the isotropic case u, possibly also holding for
v, give rise to a hope to be able to detect the logarithmic negative boundary
impact via a single sample of the nodal length or very few ones.



Boundary-adapted random spherical harmonics



Random spherical harmonics

S2 (unit) sphere, Laplace
eigenvalues are all the numbers
ℓ(ℓ+ 1), for ℓ nonnegative integer.
The corresponding eigenspace, is
2ℓ+ 1-dim. space of spherical
harmonics of degree ℓ, let
Eℓ := {ηℓ,1, . . . ηℓ,2ℓ+1} be its
arbitrary L2-orthonormal basis.

Degree-ℓ random spherical harmonics

T̃ℓ(x) =

√
4π

2ℓ+ 1

2ℓ+1∑
k=1

ak · ηℓ,k(x), x ∈ S2,

ak i.i.d. standard Gaussian random variables.

Law of T̃ℓ invariant w.r.t. the chosen orthonormal basis Eℓ, uniquely defined
via the covariance function

E[T̃ℓ(x) · T̃ℓ(y)] = Pℓ(cos d(x, y)),

d(·, ·) is the spherical distance between x, y ∈ S2 (isotropy).



[Berard, 1985] evaluated the
expected total nodal length

E[L(T̃ℓ)] =
√
2π ·

√
ℓ(ℓ+ 1).

Scaling Limit of Random Spherical Harmonics

Theorem (Zelditch)

Random plane wave is the scaling limit of random spherical
harmonic

Figure: Nodal lines of a random plane wave and of a random spherical
harmonicAs ℓ→ ∞ its variance is asymptotic to [Wigman, 2010]

Var(L(T̃ℓ)) ∼
1

32
log ℓ,

in accordance with random monochromatic waves [Berry 2002], as R → ∞

Var(L(u;R)) = 1

256
·R2 logR+O(R2),

save for the scaling, and the invariance of the nodal lines w.r.t. the symmetry
x 7→ −x of the sphere, resulting in a doubled leading constant suitably scaled.



Boundary-adapted random spherical harmonics

H2 ⊆ S2 hemisphere with Dirichlet boundary conditions along the equator.

[Hassell-Tao, 2002 Example 4] the eigenfunctions are given by those
spherical harmonics which are odd under reflection in the (x1, x2) plane,
namely, spherical harmonics where −ℓ ≤ m ≤ ℓ and ℓ−m is odd.

For ℓ ≥ 0, |m| ≤ ℓ the spherical harmonic Yℓ,m obeys the Dirichlet boundary
condition on the equator, if and only if m ̸≡ ℓ mod 2, spanning a subspace of
dimension ℓ inside the (2ℓ+ 1)-dimensional space of spherical harmonics of
degree ℓ.

(Its (ℓ+ 1)-dimensional orthogonal complement is the subspace satisfying
the Neumann boundary condition).



Boundary-adapted random spherical harmonics

Tℓ(x) =

√
8π

2ℓ+ 1

ℓ∑
m=−ℓ

m ̸≡ℓ mod 2

aℓ,mYℓ,m(x),

aℓ,m standard complex-valued Gaussian s.t. aℓ,−m = aℓ,m, Tℓ real-valued,
with covariance function:

E[Tℓ(x) · Tℓ(y)] = Pℓ(cos d(x, y))− Pℓ(cos d(x, y)),

where y is the mirror symmetry of y around the equator

y = (θ, ϕ) 7→ y = (π − θ, ϕ).

Proof: use Yℓ,m(θ, ϕ) = (−1)ℓ+mYℓ,m(π − θ, ϕ) and Addition Theorem.

The law of Tℓ is invariant (see definition or covariance) w.r.t. rotations of H2

around the axis orthogonal to the equator, in the spherical coordinates

Tℓ(θ, ϕ) 7→ Tℓ(θ, ϕ+ ϕ0), ϕ ∈ [0, 2π)

The mirror symmetry y 7→ ỹ relatively to the x axis in the Euclidean situation
is substituted by mirror symmetry y 7→ y relatively to the equator.



Zero density

K1,ℓ(x) =
1√

2π ·
√

Var(Tℓ(x))
E
[
∥∇Tℓ(x)∥

∣∣Tℓ(x) = 0
]
,

unlike the rotation invariant spherical harmonics it genuinely depends on
x ∈ H2. More precisely, the zero density K1,ℓ(x) depends on the polar angle
θ only.

We rescale by introducing the variable

ψ = ℓ(π − 2θ),

and, with a slight abuse of notation, write

K1,ℓ(ψ) = K1,ℓ(x).



Our principal result is on the asymptotics of K1,ℓ in two different regimes.

Theorem (C.-Marinucci-Wigman, 2021)

1. For C > 0 sufficiently large, as ℓ→ ∞, one has

K1,ℓ(ψ) =

√
ℓ(ℓ+ 1)

2
√
2

[
1 +

√
2

π

1√
ψ

cos{(ℓ+ 1/2)ψ/ℓ− π/4} − 1

16πψ

+
15

16πψ
cos{(ℓ+ 1/2)2ψ/ℓ− π/2}

]
+O(ψ−3/2ℓ−2),

uniformly for C < ψ < πℓ, with the constant involved in the ‘O′-notation
absolute.

2. For ℓ ≥ 1 one has the uniform asymptotics

K1,ℓ(ψ) =
ℓ

2π

[
1 +O(ℓ−1) +O(ψ2)

]
,

with the constant involved in the ‘O′-notation absolute. (This is
asymptotic for ψ small only, otherwise yielding the mere bound
K1,ℓ(ψ) = O(ℓ).)



Proof

K1,ℓ(x) =
1√

2π ·
√

Var(Tℓ(x))
E
[
∥∇Tℓ(x)∥

∣∣Tℓ(x) = 0
]

▶ we naturally encounter the distribution of Tℓ(x), determined by

Var(Tℓ(x)) = 1− Pℓ(cos d(x, x̄)),

▶ and the distribution of ∇Tℓ(x) conditioned on Tℓ(x) = 0, is determined
by its 2× 2 covariance matrix

Ωℓ(x) = E[∇Tℓ(x) · ∇tTℓ(x)|Tℓ(x) = 0] =
ℓ(ℓ+ 1)

2
[I2 + Sℓ(x)]

depending only on θ (explicit computation).



Perturbative analysis away from the boundary
▶ evaluate the variance Var(Tℓ(x)) and each entry in Sℓ(x) using the high

degree asymptotics of the Legendre polynomials and its derivatives
(Hilb’s asymptotics).

▶ exploit the analyticity of the Gaussian expectation K1,ℓ as a function of
the entries of the corresponding non-singular covariance matrix, to
Taylor expand K1,ℓ(x) where both Var(Tℓ(x))− 1 and the entries of
Sℓ(x) are small.

Perturbative analysis at the boundary
▶ study the asymptotic behaviour of the density function K1,ℓ(ψ) for

0 < ψ < ϵ0 with ϵ0 > 0 sufficiently small.



Kac-Rice formula

Theorem (C.-Marinucci-Wigman, 2021)

The expected nodal length of Tℓ satisfies

E[L(Tℓ)] =

∫
H2

K1,ℓ(x)dx+ 2π,

where K1,ℓ(·) is the zero density of Tℓ.

▶ Kac-Rice formula outside the equator is verified via an explicit
computation (non-degeneracy of the covariance matrix at all these
points)

▶ the non-degeneracy conditions fail at the equator
E = {(θ, ϕ) : θ = π/2} ⊆ H2

▶ we excise a small neighbourhood of this degenerate set, and apply the
Monotone Convergence Theorem so to be able to prove that Kac-Rice
holds precisely, save for the length of the equator

▶ the equator is bound to be contained in the nodal set of Tℓ, by the
Dirichlet boundary condition.



Expected nodal length

As a corollary, one may evaluate the asymptotic law of the total expected
nodal length of Tℓ, and detect the negative logarithmic bias relatively to
[Berard, 1985]

E[L(T̃ℓ)] =
√
2π ·

√
ℓ(ℓ+ 1),

in full accordance with [Berry, 2002].

Corollary (C.-Marinucci-Wigman, 2021)

As ℓ→ ∞, the expected nodal length has the following asymptotics:

E[L(Tℓ)] = 2π

√
ℓ(ℓ+ 1)

2
√
2

− 1

32
√
2
log(ℓ) +O(1).



Proof

We separate the contribution of the following three subregions of the
hemisphere H2 in the Kac-Rice integral:

HF = {(ψ, ϕ) : C < ψ < πℓ}

HC = {(ψ, ϕ) : 0 < ψ < ϵ0}

HI = {(ψ, ϕ) : ϵ0 < ψ < C}

▶ HF gives the main contribution

▶ the contribution of HC is bounded recalling the uniform estimate of K1,ℓ

▶ intermediate range

▶ the variance at the denominator is bounded away from 0
▶ the diagonal entries of the unconditional covariance matrix are O(ℓ2) and

the diagonal entries of the conditional matrix are bounded by the
unconditional ones from Gaussian Correlation Inequality [Royen, 2014]

E[∥∇Tℓ(ψ/ℓ)∥
∣∣Tℓ(ψ/ℓ) = 0] ≤

(
E[∥∇Tℓ(ψ/ℓ)∥2

∣∣Tℓ(ψ/ℓ) = 0]
)1/2

≤
(
E[∥∇Tℓ(ψ/ℓ)∥2]

)1/2
= O(ℓ).



Square with Dirichlet boundary



Arithmetic Random Waves

T2 = R2/Z2, Laplace eigenvalues
are all the number 4π2n, n integer
expressible as a sum of two
squares, corresponding
eigenspace is the collection of all
(complex) linear combinations of
the plane waves

e2πi⟨µ,x⟩

µ = (µ1, µ2) ∈ Z2 lattice points lying on the radius-
√
n centred circle.

Arithmetic Random Waves [Oravecz-Rudnick-Wigman, 2008] is the
Gaussian ensemble fn : T2 → R

fn(x) =
∑

∥µ∥2=n

aµ e
2πi⟨µ,x⟩,

aµ standard complex i.i.d. Gaussian, save for a−µ = aµ making fn real.

Expected nodal length [Rudnick-Wigman, 2008] E[L(fn)] =
√
2π2 ·

√
n.



Square with Dirichlet boundary
[C.-Klurman-Wigman, 2020] compares the torus to the square with Dirichlet
boundary.
The total nodal bias fluctuates from nodal deficiency (negative bias) to nodal
surplus (positive bias), depending on the angular distribution of the lattice
points and its interaction with the direction of the square boundary, at least,
for generic energy levels.

Figure: Nodal line for n = 170, n = 765, n = 1000.

The degenerate set consists of a union of a grid and finitely many isolated
point, by Monotone Convergence Theorem, it is possible to deduce that
Kac-Rice holds precisely, save for the length of the deterministic grid
contained in the nodal set.


