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Introduction



Introduction - About Random trigonometric polynomials.

There exist two main variants of RTP.

Qualls

Tn(x) :=
1√
n

n∑
k=1

ak cos(kx) + bk sin(kx).

Classical

Cn(x) :=
1√
n

n∑
k=1

ak cos(kx).

The first works date from the 60s and deal with the asymptotic behavior of the
expectation in the case of standard Gaussian coefficients. Das, Dunnage, Wilkins
proved that the number of roots Nn of both Tn and Cn on [0, 2π] verifies

E (Nn) ∼
n→∞

2n√
3
.
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Introduction - About Random trigonometric polynomials.

The behavior of this ensemble of random polynomials (and of its generalizations
regarding the law of the coefficients) is nowadays well understood since it has
been intensively studied by Granville, Wigman, Angst, Pautrel, Poly, Coutin,
Peralta, Flasche, etc.

1. The asymptotic expectation is universal in the iiid case.

2. The asymptotic variance is not universal in the iiid case.

3. In the correlated Gaussian case a whole interval of possible limit
expectations appears, or even we can observe an oscilation.

4. In the iid Gaussian case, the variance grows linearly with n and a CLT
holds true.
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Introduction - A few generalizations.

Today, we want to generalize in a particular direction this setting. The idea is to
replace sines and cosines by another class of convenient/interesting functions.

1. Angst and Poly studied periodic signals.

2. Do, Nguyen, Nguyen and Pritsker studied the number of (real) roots of
orthogonal polynomials defined on curves.

3/22,



Introduction - Motivation.

This work was somehow motivated by the paper

Do, Yen; Nguyen, Hoi H; Nguyen, Oanh; Pritsker, Igor. Central limit theorem for
the number of real roots of random orthogonal polynomials. arxiv.org/abs/2111.09015.

(Here, we do not have stationarity, the result is obtained via chaotic expansions.)

It remembered us our first works on random polynomials, about the number of
roots of Qualls’ and classical random trigonometric polynomials..
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Introduction - Motivation.

A trigonometric polynomial can be thought as a finite Fourier expansion of a
given function. Thus, random trigonometric polynomials are, in this sense, finite
Fourier expansions of random functions, that is, expansions in the orthogonal
basis formed by sines and cosines.

Naturally, one can think of other similar expansions as that in terms of Bessel
functions.

Fourier and Bessel expansions are particular cases of Sturm-Liouville expansions.

Let q : [a, b]→ R be a positive (or bounded by below) and continuous function
with finite limits at a, b and consider the differential operator

L := q(x)− d2

dx2
, (1)

which acts on smooth functions defined on [a, b]. Under these conditions on q,
the problem is called regular.

When q = 0 we retrieve the trigonometric/Fourier case while if q(x) = (ν− 1
4
) 1
x2

we recover the Bessel case.
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Introduction - Motivation.

The classical theory, states that under mild conditions, an integrable function f
can be expanded in terms of the eigenfunctions of L, being the behavior of this
expansion similar to that of the Fourier case.
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Introduction - Motivation.

Fourier expansions can be used in the solution of the (here, one dimensional)
Wave Equation:

∂2u

∂t2
= c

∂2u

∂x2
, t ∈ [a, b],

for some constant c > 0. The eigenfunctions of a differential operator related to
L help to solve more general initial value problems of the forms

(C) :


∂2u

∂t2
=

1

ω2(x)

∂2u

∂x2

u(t, a) = ua(t), t > 0,

u′(t, a) = 0, t > 0,

(D) :


∂2u

∂t2
=

1

ω2(x)

∂2u

∂x2

u(t, a) = u(t, b) = 0, t > 0,

(2)
where ω is a strictly positive, twice continuously differentiable function s.t.∫ b
a
w(u)du <∞.
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Introduction - Motivation.

These equations can be written in a Normal form by the change of variables

y =

∫ x

0

ω(u)du

and define g(y) := ω1/2(x)f(x), x ∈ [0, 2π]. We have dx
dy

= 1
ω(x)

. Thus, we
have

d2g

d2y
=
[
γ +

ω′′

2ω3
− 3(ω′)2

4ω4

]
g.
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Some preliminaries

A function ψ is said to be an eigenfunction of L if

Lψ = λψ, (3)

for some number λ (known as the corresponding eigenvalue) and provided that
it verifies some specified border conditions.

In particular, it is well known that the eigenvalues are simple, positive and un-
bounded. That is, the eigenvalues form a sequence

0 < λ1 < · · · < λn < · · · → ∞.

Furthermore, the eigenvalues of the operator L are real and that they verify the
asymptotics {√

λn = n
2

+O( 1
n

), in case (C)√
λn = n+1

2
+O( 1

n
), in case (D).

(C) and (D) to be precised soon.

For ease of notation we group the eigenfunctions according to their phase n
2 .

9/22,



Some preliminaries

Moreover, the eigenfunctions ψn of L, corresponding to the eigenvalues λn : n ∈
N, form an orthogonal system, thus generalizing the trigonometric case.

Besides, the eigenfunctions of L verify the asymptotics (w.l.o.g. we choose the
leading constant to be 1, afterwards we will normalize the polynomials so that
they have variance one):

I in case (C) : for n large enough, uniformly in [0, 2π], we have

un(x) =
1

ω(x)1/2
cos

(
n

2

∫ x

0

ω(u)du

)
+O

( 1

n

)
,

u′n(x) = −n
2
ω(x)1/2 sin

(
n

2

∫ x

0

ω(u)du

)
+O(1).

I In case (D), for n large enough, uniformly in [0, 2π], we have

vn(x) =
1

ω(x)1/2
sin

(
n

2

∫ x

0

ω(u)du

)
+O

( 1

n

)
,

v′n(x) =
n

2
ω(x)1/2 cos

(
n

2

∫ x

0

ω(u)du

)
+O(1).
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Problem setting and main results

Let ω be a strictly positive, twice continuously differentiable weight function s.t.∫ 2π

0

ω(u)du = 2π.

Consider a sequence of independent standard Gaussian r.v.s {ak, bk}∞k=1 and
define

Fn(x) :=
1√
n

n∑
k=1

akuk(x) + bkvk(x), x ∈ [0, 2π], (4)

where uk, vk : k ≥ 1 stand for sequences of orthonormal eigenfunctions (with
eigenvalue λk) of the Sturm-Liouville operator L, (1)-(3), associated to q =
ω′′

2ω3 − 3
4

(ω′)2

ω4 , corresponding respectively to two sets of ’basic’ initial conditions

(C) : g(0) 6= 0, g′(0) = 0, (D) : g(0) = g(2π) = 0.

.
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Problem setting and main results

Let Nn be the number of roots of Fn on the interval [0, 2π], i.e:

Nn := #{x ∈ [0, 2π] : Fn(x) = 0}.

The next theorem is the main result of this talk.

Teorema

With the above notation, as n→∞, there exists 0 < V <∞ s.t.

ĺım
n→∞

Var (Nn)

n
= V,

and after normalization, the distribution of Nn converges towards the standard
Gaussian law.
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Problem setting and main results

The main idea of the proof of the Theorem is to take profit of the available central
limit theorem for the number of zeros of stationary trigonometric polynomials Tn
by assesing the L1 contiguity between both numbers of zeros. As a by-product
of our proof we obtain the following robustness result for perturbed random
trigonometric polynomials.

Corolario

Let εk, ηk : [0, 2π]→ R, k ≥ 1 be of class C2 with |εk(·)|, |ηk(·)| ≤ cst
k

and
|ε′k(·)|, |η′k(·)| ≤ cst, then, the conclusions of Theorem ?? hold true for the
number of roots of the perturbed random trigonometric polynomial

1√
n

n∑
k=1

ak(cos(kx) + εk(x)) + bk(sin(kx) + ηk(x)),

for i.i.d standard Gaussian ak, bk : k ≥ 1.
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Sketch of the proof



Sketch of the proof

The idea of the proof is to compare the number of roots of Fn with those of
Qualls’ random trigonometric polynomials Tn.

This is done in two steps

1. To consider the trigonometric part.

2. To consider the error term.
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Sketch of the proof - step 1

For a process Zn defined on the interval I, denote its number of zeros and its
standardized number of zeros respectively by

N (Zn, I) := #
{
x ∈ I : Zn(x) = 0

}
and Ñ (Zn, I) :=

N (Zn, I)−E N (Zn, I)√
n

.

For x ∈ [0, 2π], denote Ω(x) :=
∫ x
0
ω(u)du, and

ck :=
1

ω(x)1/2
cos

(
k

2
Ω(x)

)
, sk :=

1

ω(x)1/2
sin

(
k

2
Ω(x)

)
. (5)

Let also

Xo
n(x) =

1√
n

n∑
k=1

akck(x) + bksk(x), x ∈ [0, 2π].
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Sketch of the proof - step 1

Since Ω : [0, 2π] → [0, 2π] is bijective, setting y = Ω(x) and introducing the
process

Y on (y) = Xo
n(Ω−1(y)) =

√
2

nω(Ω−1(y))

n∑
k=1

ak cos
(k

2
y
)

+ bk sin
(k

2
y
)
,

we have
N (Xo

n, [0, 2π]) = N (Y on , [0, 2π]).

Thus, we are led to study the number of roots of a stationary trigonometric
polynomial Tn restricted to the interval [0, π].
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Sketch of the proof - step 2

The next step is to approximate Nn = N (Fn, [0, 2π]) by N (Xo
n, [0, 2π]).

It is convenient to standardize the processes Xo
n and Fn. Define for x ∈ [0, 2π]

Xn(x) := ω(x)1/2Xo
n(x) =

1√
n

n∑
k=1

ak cos
(k

2
Ω(x)

)
+ bk sin

(k
2

Ω(x)
)
,

and
fn(x) :=

√
ω(x)Fn(x).

Observe that, since the factor
√
ω(x) in the definition of fn plays no role in

the study of the zeros, we have Nn = N (fn, [0, 2π]).

17/22,



Sketch of the proof - step 2

The next proposition provides the final approximation we need. Once
iestablished, the central limit theorem for N (fn, [0, 2π]) follows from that for
N (Xn, [0, 2π]).

Proposición

For Xn, fn defined as above, we have

N (fn, [0, 2π])−N (Xn, [0, 2π])√
n

L1

−→
n

0.

Observe that this fact implies the CLT.
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Sketch of the proof - step 2

For brevity, we set Nfn and NXn for N (fn, [0, 2π]) and N (Xn, [0, 2π])
respectively.

We use the Kac formula to estimate the L1 distance. We have

E |Nfn −NXn | = E
∣∣∣ ĺım
δ↓0

1

2δ

∫ 2π

0

[
|X ′n|I|Xn|<δ − |f

′
n|I|fn|<δ

]
dx
∣∣∣

≤ ĺım
δ↓0

1

2δ
E

∫ 2π

0

[
|X ′n − f ′n|I|fn|<δ + |X ′n|

∣∣I|Xn|<δ − I|fn|<δ
∣∣]dx

=: A(n) +B(n).
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Sketch of the proof - step 2

We only say a word about B(n). We have

B(n) = ĺım
δ↓0

1

2δ

∫ 2π

0

E
[
|X̃ ′n + αnfn|

∣∣∣I|Xn|<δ − I|fn|<δ
∣∣∣]]dx

≤ ĺım
δ↓0

1

2δ

∫ 2π

0

[
E |X̃ ′n|+ αE |fn|

]
· P
{
{|Xn| < δ, |fn| > δ} ∪ {|Xn| > δ, |fn| < δ}

}
dx.

Here X̃ ′n is the regressed version of X ′n. We have E |X̃ ′n| ∼n E |X ′n| = cst n
and E |fn| ∼n cst .
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Sketch of the proof - step 2

Denote
εn(x) := fn(x)−Xn(x).

We begin with the help of a control in ‖εn‖∞ := supx∈[0,2π] |εn(x)|.

1

2δ
P
{
|Xn| < δ, |fn| > δ, ‖εn‖∞ <

cst logn√
n

}
≤ 1

2δ
P
{
|Xn| < δ < |fn| < δ +

cst logn√
n

}
=

1

2δ

∫ δ

−δ
du

∫ δ+ cst log n√
n

δ

pXn,fn
(u, v)dv →

δ↓0

∫ cst log n√
n

0

pXn,fn
(0, v)dv

=
cst logn√

n
pXn,fn

(
0, θ

cst logn√
n

)
=

cst logn√
n

1

2π
√

∆
exp

{
− 1

2

Var (fn) · ( cst logn√
n

)2

∆

}
.
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Sketch of the proof - step 2

Here ∆ stands for the determinant of Var (Xn(x), fn(x)). As ∆ ∼n cst
n

, we
have

ĺım
δ↓0

1

2δ
P
{
|Xn| < δ, |fn| > δ, ‖εn‖∞ <

cst logn√
n

}
≤ cst logn · exp{−cst (logn)2} =

cst logn

ncst logn
.
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