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Random fields and critical points

Simulation of a planar random field and its critical points.
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Introduction and motivations

Let f : Rd → R be a smooth random field. Let

NR(f) = Card{x ∈ B(0, R) | ∇f(x) = 0}.

Zero sets of the two partial derivatives of a planar Gaussian process
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The moment conjecture

Conjecture
Assume that the covariance function of the Gaussian field f and its
derivatives are in L2(Rd). Then for every integer p ≥ 1,

lim
R→+∞

E

[(
NR(f)− E[NR(f)]√

Var(NR(f))

)p]
= E[W p],

where W is standard Gaussian.

When d = 1:
• Finiteness of moments:
→ Cuzick (1975)
→ Armentano–Azaïs–Dalmao–León–Mordecki (2020)
• Moments asymptotics:
→ Nazarov–Sodin (2012)
→ Ancona–Letendre (2020)
→ G. (2022)
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Spatial distribution of critical points

Homogeneous Poisson point process Critical points of Gaussian process
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Spatial distribution of critical points

Study of 2-points intensity function :

Theorem (Azaïs–Delmas (2019))
There is
• repulsion of critical points when d = 1,
• neutrality of critical points when d = 2,
• attraction of critical points when d ≥ 3.

→ Further analysis of repulsion bewteen extrema and saddle points:

→ Beliaev–Cammarota–Wigman (2017)
→ Azaïs–Delmas (2019)
→ Ladgham–Lachièze-Rey (2022)

→ 2-points intensity function does not explain the apparent rigidity.
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Critical points and connected components

random nodal set and critical points
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Critical points and connected components

Let N c
R be the number of connected components contained in B(0, R).

N c
R ≤ NR.

→ Essential tool in nodal component analysis:

→ Sarnak–Wigman (2015)
→ Nazarov–Sodin (2020)
→ Beliaev–Mcauley–Muirhead (2022)

Theorem (Beliaev–Mcauley–Muirhead (2022))
For a "non-degenerate" Gaussian field of class C4,

E[NR(f)
3] < +∞.

→ Proof by a technical divided difference method.
→ No result for moments of order p ≥ 4 in dimension d ≥ 2.
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Main result

Theorem (G.–Stecconi (2023))
Let f : Rd → R be a Gaussian process of class Cp+1. Assume that

∀x ∈ B(0, R), detCov
(
(∂αf(x))|α|≤p+1

)
> 0.

Then
E[NR(f)

p] < +∞.

→ Gass, L., Stecconi, M. (2023). "The number of critical points of a Gaussian
field: finiteness of moments". arXiv preprint arXiv:2305.17586.

→ Non-degeneracy hypothesis on the (p+ 1)-jets of f .
→ Valid i.e. for Bargmann-Fock random field.
→ Extend the previous result of Beliaev–Mcauley–Muirhead to any p.
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Kac–Rice formula

Let
∆ =

{
x ∈ (Rd)p

∣∣∣ ∃i ̸= j s.t. xi = xj

}
.

Theorem (Kac–Rice formula)
Let f be a process of class C2 such that (∇f(xi))1≤i≤p has a density
ψf
x for all x ∈ B(0, R)p \∆. Then

E[NR(f)
[p]] =

∫
B(0,R)p\∆

ρf (x)dx,

where

ρf (x) = E

[
p∏

k=1

|detHessf(xk)|

∣∣∣∣∣∇f(x1) = . . .= ∇f(xp) = 0

]
ψf
x(0).

→ Difficult to understand the behavior of ρf near the diagonal ∆.
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Key observation

In the following f is a Cp+1 Gaussian field such that

∀x ∈ B(0, R), detCov
(
(∂αf(x))|α|≤p+1

)
> 0.

Lemma
For R small enough and all x ∈ B(0, R)p \∆,

ρf (x) = Q(x)σf (x),

where
• Q is universal (does not depend on f )
• σf is bounded above and below by positive constants.

→ For all "non-degenerate" fields: same near-diagonal behavior.
→ Finiteness of moments is true for a random polynomial g (Bezout).

ρf ≤
supσf
inf σg

ρg ∈ L1(B(0, R)).
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Extracting the singularity

ρf (x) =
E
[∏p

k=1 | detHessf(xk)|
∣∣∇f(x1) = . . .= ∇f(xp) = 0

]√
det 2πCov (∇f(x1), . . . ,∇f(xp))

.

We need to understand the near-diagonal degeneracy of the vector

(∇f(x1), . . . ,∇f(xp),Hessf(xk)) for 1 ≤ k ≤ p.

→ In dimension 1: divided differences (Hermite–Lagrange interpolation)
→ No well-poised interpolation in higher dimensions (Mairhuber–Curtis)
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Extracting the singularity

Observation:

→ Divided difference is a disguised Gram–Schmidt orthonormalization

Let δx be the evaluation map at point x. For x = (x1, . . . , xp) ∈ Rp \∆,

δx =


δx1

δx2

...
δxp

 = A(x)



δx1
∥δx1∥

δx2−Projδx1
(δx2 )

∥δx2−Projδx1
(δx2 )∥

...
δxp−ProjSpan(δx1 ,...,δxp−1 )(δxp )

∥δxp−ProjSpan(δx1 ,...,δxp−1 )(δxp )∥


Evaluating at a function f:

δxf =


f(x1)
f(x2)

...
f(xp)

 = A(x)


f(x)
f [x, y]

...
f [x1, . . . , xp]
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Extracting the singularity

Let’s do the same thing in higher dimension !

Let x = (x1, . . . , xp) ∈ (Rd)p \∆. Then

∇xf =


∇f(x1)
∇f(x2)

...
∇f(xp)

 = Q0(x)Nf (x),

where
• Q0(x) is a universal square matrix of size dp,
• Nf (x) is a vector of dp "orthonormal" linear forms evaluated in f .

√
detCov (∇f(x1), . . . ,∇f(xp)) = | detQ0(x)|

√
detCov(Nf (x)).
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Extracting the singularity

Similarly,

E

[
p∏

k=1

| detHessf(xk)|

∣∣∣∣∣∇xf = 0

]
=

(
p∏

k=1

Qk(x)

)
E

[
p∏

k=1

|Hk(x)|

∣∣∣∣∣Nf (x) = 0

]
,

and thus

ρf (x) =

(∏p
k=1Qk(x)

)
Q0(x)︸ ︷︷ ︸
Q(x)

E
[∏p

k=1 |Hk(x)|
∣∣Nf (x) = 0

]√
detCov(Nf (x))︸ ︷︷ ︸

σf (x)

.

→ The Kac–Rice decomposition is achieved

It remains to show that:
• there is an adequate scalar product for evaluation maps
• the function σf is bounded above and below by positive constants.

40 / 58



Extracting the singularity

Similarly,

E

[
p∏

k=1

| detHessf(xk)|

∣∣∣∣∣∇xf = 0

]
=

(
p∏

k=1

Qk(x)

)
E

[
p∏

k=1

|Hk(x)|

∣∣∣∣∣Nf (x) = 0

]
,

and thus

ρf (x) =

(∏p
k=1Qk(x)

)
Q0(x)︸ ︷︷ ︸
Q(x)

E
[∏p

k=1 |Hk(x)|
∣∣Nf (x) = 0

]√
detCov(Nf (x))︸ ︷︷ ︸

σf (x)

.

→ The Kac–Rice decomposition is achieved

It remains to show that:
• there is an adequate scalar product for evaluation maps
• the function σf is bounded above and below by positive constants.

41 / 58



Extracting the singularity

Similarly,

E

[
p∏

k=1

| detHessf(xk)|

∣∣∣∣∣∇xf = 0

]
=

(
p∏

k=1

Qk(x)

)
E

[
p∏

k=1

|Hk(x)|

∣∣∣∣∣Nf (x) = 0

]
,

and thus

ρf (x) =

(∏p
k=1Qk(x)

)
Q0(x)︸ ︷︷ ︸
Q(x)

E
[∏p

k=1 |Hk(x)|
∣∣Nf (x) = 0

]√
detCov(Nf (x))︸ ︷︷ ︸

σf (x)

.

→ The Kac–Rice decomposition is achieved

It remains to show that:
• there is an adequate scalar product for evaluation maps
• the function σf is bounded above and below by positive constants.

42 / 58



Extracting the singularity

Similarly,

E

[
p∏

k=1

| detHessf(xk)|

∣∣∣∣∣∇xf = 0

]
=

(
p∏

k=1

Qk(x)

)
E

[
p∏

k=1

|Hk(x)|

∣∣∣∣∣Nf (x) = 0

]
,

and thus

ρf (x) =

(∏p
k=1Qk(x)

)
Q0(x)︸ ︷︷ ︸
Q(x)

E
[∏p

k=1 |Hk(x)|
∣∣Nf (x) = 0

]√
detCov(Nf (x))︸ ︷︷ ︸

σf (x)

.

→ The Kac–Rice decomposition is achieved

It remains to show that:
• there is an adequate scalar product for evaluation maps
• the function σf is bounded above and below by positive constants.

43 / 58



Kergin interpolation

Theorem (Kergin (1980))

For x = (x0, x1, . . . , xp) ∈ (Rd)p+1 there is a projector

Πx : Cp(Rd) → Rp[X1, . . . , Xd]

such that if the multiplicity of xk in x is n then

∀|α| < n, ∂α
(
Πxf

)
(xk) = ∂αf(xk).

The polynomial Πxf does not depend only on (f(x1), . . . , f(xp)).

→ We see ∇x as a family of linear forms on a finite dimensional space
→ When points collapse, Πxf is the Taylor polynomial of f of degree p

Boundedness of σf follows from:
• Compactness properties of Rp[X1, . . . , Xd]
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Possible extensions and conjecture

Extensions

• Valid in a more general framework Πx :W → V .
→ Critical points (Schwarz), holomorphic (Cauchy-Riemann), . . .

• Valid for random nodal volume of F : Rd → Rm with m ≤ d.
• Valid for Gaussian sections of vector bundles

Work in progress

• Non-Gaussian framework
→ Shot-noise process, . . .

• CLT by the method of moments
→ Polynomial concentration of nodal volume

• Case of Berry random waves
• Exponential moment for analytic fields

→ Exponential concentration of nodal volume
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