The number of critical points of a Gaussian field: finiteness of moments

Louis GASS

joint work with Michele Stecconi

June 7, 2023

Random fields and critical points

Simulation of a planar random field and its critical points.

Outline

(1) Introduction and motivations
(2) Main result and sketch of proof
(3) Extensions and conjectures

Introduction and motivations

Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a smooth random field. Let

$$
N_{R}(f)=\operatorname{Card}\{x \in B(0, R) \mid \nabla f(x)=0\} .
$$

Introduction and motivations

Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a smooth random field. Let

$$
N_{R}(f)=\operatorname{Card}\{x \in B(0, R) \mid \nabla f(x)=0\} .
$$

Zero sets of the two partial derivatives of a planar Gaussian process

The moment conjecture

Conjecture

Assume that the covariance function of the Gaussian field f and its derivatives are in $L^{2}\left(\mathbb{R}^{d}\right)$. Then for every integer $p \geq 1$,

$$
\lim _{R \rightarrow+\infty} \mathbb{E}\left[\left(\frac{N_{R}(f)-\mathbb{E}\left[N_{R}(f)\right]}{\sqrt{\operatorname{Var}\left(N_{R}(f)\right)}}\right)^{p}\right]=\mathbb{E}\left[W^{p}\right]
$$

where W is standard Gaussian.

The moment conjecture

Conjecture

Assume that the covariance function of the Gaussian field f and its derivatives are in $L^{2}\left(\mathbb{R}^{d}\right)$. Then for every integer $p \geq 1$,

$$
\lim _{R \rightarrow+\infty} \mathbb{E}\left[\left(\frac{N_{R}(f)-\mathbb{E}\left[N_{R}(f)\right]}{\sqrt{\operatorname{Var}\left(N_{R}(f)\right)}}\right)^{p}\right]=\mathbb{E}\left[W^{p}\right]
$$

where W is standard Gaussian.
When $d=1$:

- Finiteness of moments:
\rightarrow Cuzick (1975)
\rightarrow Armentano-Azaïs-Dalmao-León-Mordecki (2020)

The moment conjecture

Conjecture

Assume that the covariance function of the Gaussian field f and its derivatives are in $L^{2}\left(\mathbb{R}^{d}\right)$. Then for every integer $p \geq 1$,

$$
\lim _{R \rightarrow+\infty} \mathbb{E}\left[\left(\frac{N_{R}(f)-\mathbb{E}\left[N_{R}(f)\right]}{\sqrt{\operatorname{Var}\left(N_{R}(f)\right)}}\right)^{p}\right]=\mathbb{E}\left[W^{p}\right]
$$

where W is standard Gaussian.
When $d=1$:

- Finiteness of moments:
\rightarrow Cuzick (1975)
\rightarrow Armentano-Azaïs-Dalmao-León-Mordecki (2020)
- Moments asymptotics:
\rightarrow Nazarov-Sodin (2012)
\rightarrow Ancona-Letendre (2020)
\rightarrow G. (2022)

Spatial distribution of critical points

Homogeneous Poisson point process

Critical points of Gaussian process

Spatial distribution of critical points

Study of 2-points intensity function :
Theorem (Azaïs-Delmas (2019))
There is

- repulsion of critical points when $d=1$,
- neutrality of critical points when $d=2$,
- attraction of critical points when $d \geq 3$.

Spatial distribution of critical points

Study of 2-points intensity function :
Theorem (Azaïs-Delmas (2019))
There is

- repulsion of critical points when $d=1$,
- neutrality of critical points when $d=2$,
- attraction of critical points when $d \geq 3$.
\rightarrow Further analysis of repulsion bewteen extrema and saddle points:
\rightarrow Beliaev-Cammarota-Wigman (2017)
\rightarrow Azaïs-Delmas (2019)
\rightarrow Ladgham-Lachièze-Rey (2022)

Spatial distribution of critical points

Study of 2-points intensity function :
Theorem (Azaïs-Delmas (2019))
There is

- repulsion of critical points when $d=1$,
- neutrality of critical points when $d=2$,
- attraction of critical points when $d \geq 3$.
\rightarrow Further analysis of repulsion bewteen extrema and saddle points:
\rightarrow Beliaev-Cammarota-Wigman (2017)
\rightarrow Azaïs-Delmas (2019)
\rightarrow Ladgham-Lachièze-Rey (2022)
\rightarrow 2-points intensity function does not explain the apparent rigidity.

Critical points and connected components

random nodal set and critical points

Critical points and connected components

Let N_{R}^{c} be the number of connected components contained in $B(0, R)$.

$$
N_{R}^{c} \leq N_{R}
$$

Critical points and connected components

Let N_{R}^{c} be the number of connected components contained in $B(0, R)$.

$$
N_{R}^{c} \leq N_{R}
$$

\rightarrow Essential tool in nodal component analysis:
\rightarrow Sarnak-Wigman (2015)
\rightarrow Nazarov-Sodin (2020)
\rightarrow Beliaev-Mcauley-Muirhead (2022)

Critical points and connected components

Let N_{R}^{c} be the number of connected components contained in $B(0, R)$.

$$
N_{R}^{c} \leq N_{R}
$$

\rightarrow Essential tool in nodal component analysis:
\rightarrow Sarnak-Wigman (2015)
\rightarrow Nazarov-Sodin (2020)
\rightarrow Beliaev-Mcauley-Muirhead (2022)
Theorem (Beliaev-Mcauley-Muirhead (2022))
For a "non-degenerate" Gaussian field of class \mathcal{C}^{4},

$$
\mathbb{E}\left[N_{R}(f)^{3}\right]<+\infty .
$$

Critical points and connected components

Let N_{R}^{c} be the number of connected components contained in $B(0, R)$.

$$
N_{R}^{c} \leq N_{R}
$$

\rightarrow Essential tool in nodal component analysis:
\rightarrow Sarnak-Wigman (2015)
\rightarrow Nazarov-Sodin (2020)
\rightarrow Beliaev-Mcauley-Muirhead (2022)
Theorem (Beliaev-Mcauley-Muirhead (2022))
For a "non-degenerate" Gaussian field of class \mathcal{C}^{4},

$$
\mathbb{E}\left[N_{R}(f)^{3}\right]<+\infty .
$$

\rightarrow Proof by a technical divided difference method.

Critical points and connected components

Let N_{R}^{c} be the number of connected components contained in $B(0, R)$.

$$
N_{R}^{c} \leq N_{R}
$$

\rightarrow Essential tool in nodal component analysis:
\rightarrow Sarnak-Wigman (2015)
\rightarrow Nazarov-Sodin (2020)
\rightarrow Beliaev-Mcauley-Muirhead (2022)
Theorem (Beliaev-Mcauley-Muirhead (2022))
For a "non-degenerate" Gaussian field of class \mathcal{C}^{4},

$$
\mathbb{E}\left[N_{R}(f)^{3}\right]<+\infty
$$

\rightarrow Proof by a technical divided difference method.
\rightarrow No result for moments of order $p \geq 4$ in dimension $d \geq 2$.

Main result

Theorem (G.-Stecconi (2023))
Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a Gaussian process of class \mathcal{C}^{p+1}. Assume that

$$
\forall x \in B(0, R), \quad \operatorname{det} \operatorname{Cov}\left(\left(\partial^{\alpha} f(x)\right)_{|\alpha| \leq p+1}\right)>0 .
$$

Then

$$
\mathbb{E}\left[N_{R}(f)^{p}\right]<+\infty .
$$

\rightarrow Gass, L., Stecconi, M. (2023). "The number of critical points of a Gaussian field: finiteness of moments". arXiv preprint arXiv:2305.17586.

Main result

Theorem (G.-Stecconi (2023))
Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a Gaussian process of class \mathcal{C}^{p+1}. Assume that

$$
\forall x \in B(0, R), \quad \operatorname{det} \operatorname{Cov}\left(\left(\partial^{\alpha} f(x)\right)_{|\alpha| \leq p+1}\right)>0 .
$$

Then

$$
\mathbb{E}\left[N_{R}(f)^{p}\right]<+\infty .
$$

\rightarrow Gass, L., Stecconi, M. (2023). "The number of critical points of a Gaussian field: finiteness of moments". arXiv preprint arXiv:2305.17586.
\rightarrow Non-degeneracy hypothesis on the $(p+1)$-jets of f.

Main result

Theorem (G.-Stecconi (2023))
Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a Gaussian process of class \mathcal{C}^{p+1}. Assume that

$$
\forall x \in B(0, R), \quad \operatorname{det} \operatorname{Cov}\left(\left(\partial^{\alpha} f(x)\right)_{|\alpha| \leq p+1}\right)>0 .
$$

Then

$$
\mathbb{E}\left[N_{R}(f)^{p}\right]<+\infty .
$$

\rightarrow Gass, L., Stecconi, M. (2023). "The number of critical points of a Gaussian field: finiteness of moments". arXiv preprint arXiv:2305.17586.
\rightarrow Non-degeneracy hypothesis on the $(p+1)$-jets of f.
\rightarrow Valid i.e. for Bargmann-Fock random field.

Main result

Theorem (G.-Stecconi (2023))
Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a Gaussian process of class \mathcal{C}^{p+1}. Assume that

$$
\forall x \in B(0, R), \quad \operatorname{det} \operatorname{Cov}\left(\left(\partial^{\alpha} f(x)\right)_{|\alpha| \leq p+1}\right)>0 .
$$

Then

$$
\mathbb{E}\left[N_{R}(f)^{p}\right]<+\infty .
$$

\rightarrow Gass, L., Stecconi, M. (2023). "The number of critical points of a Gaussian field: finiteness of moments". arXiv preprint arXiv:2305.17586.
\rightarrow Non-degeneracy hypothesis on the $(p+1)$-jets of f.
\rightarrow Valid i.e. for Bargmann-Fock random field.
\rightarrow Extend the previous result of Beliaev-Mcauley-Muirhead to any p.

Kac-Rice formula

Let

$$
\Delta=\left\{\underline{x} \in\left(\mathbb{R}^{d}\right)^{p} \mid \exists i \neq j \text { s.t. } x_{i}=x_{j}\right\} .
$$

Theorem (Kac-Rice formula)
Let f be a process of class \mathcal{C}^{2} such that $\left(\nabla f\left(x_{i}\right)\right)_{1 \leq i \leq p}$ has a density $\psi_{\underline{x}}^{f}$ for all $\underline{x} \in B(0, R)^{p} \backslash \Delta$. Then

$$
\mathbb{E}\left[N_{R}(f)^{[p]}\right]=\int_{B(0, R)^{p} \backslash \Delta} \rho_{f}(\underline{x}) \mathrm{d} \underline{x}
$$

where

$$
\rho_{f}(\underline{x})=\mathbb{E}\left[\prod_{k=1}^{p}\left|\operatorname{det} \operatorname{Hess} f\left(x_{k}\right)\right| \mid \nabla f\left(x_{1}\right)=\ldots=\nabla f\left(x_{p}\right)=0\right] \psi_{\underline{x}}^{f}(0)
$$

Kac-Rice formula

Let

$$
\Delta=\left\{\underline{x} \in\left(\mathbb{R}^{d}\right)^{p} \mid \exists i \neq j \text { s.t. } x_{i}=x_{j}\right\}
$$

Theorem (Kac-Rice formula)
Let f be a process of class \mathcal{C}^{2} such that $\left(\nabla f\left(x_{i}\right)\right)_{1 \leq i \leq p}$ has a density $\psi_{\underline{x}}^{f}$ for all $\underline{x} \in B(0, R)^{p} \backslash \Delta$. Then

$$
\mathbb{E}\left[N_{R}(f)^{[p]}\right]=\int_{B(0, R)^{p} \backslash \Delta} \rho_{f}(\underline{x}) \mathrm{d} \underline{x},
$$

where

$$
\rho_{f}(\underline{x})=\mathbb{E}\left[\prod_{k=1}^{p}\left|\operatorname{det} \operatorname{Hess} f\left(x_{k}\right)\right| \mid \nabla f\left(x_{1}\right)=\ldots=\nabla f\left(x_{p}\right)=0\right] \psi_{\underline{x}}^{f}(0)
$$

\rightarrow Difficult to understand the behavior of ρ_{f} near the diagonal Δ.

Key observation

In the following f is a C^{p+1} Gaussian field such that
$\forall x \in B(0, R), \quad \operatorname{det} \operatorname{Cov}\left(\left(\partial^{\alpha} f(x)\right)_{|\alpha| \leq p+1}\right)>0$.

Key observation

In the following f is a C^{p+1} Gaussian field such that

$$
\forall x \in B(0, R), \quad \operatorname{det} \operatorname{Cov}\left(\left(\partial^{\alpha} f(x)\right)_{|\alpha| \leq p+1}\right)>0 .
$$

Lemma
For R small enough and all $\underline{x} \in B(0, R)^{p} \backslash \Delta$,

$$
\rho_{f}(\underline{x})=Q(\underline{x}) \sigma_{f}(\underline{x}),
$$

where

- Q is universal (does not depend on f)
- σ_{f} is bounded above and below by positive constants.

Key observation

In the following f is a C^{p+1} Gaussian field such that

$$
\forall x \in B(0, R), \quad \operatorname{det} \operatorname{Cov}\left(\left(\partial^{\alpha} f(x)\right)_{|\alpha| \leq p+1}\right)>0 .
$$

Lemma
For R small enough and all $\underline{x} \in B(0, R)^{p} \backslash \Delta$,

$$
\rho_{f}(\underline{x})=Q(\underline{x}) \sigma_{f}(\underline{x}),
$$

where

- Q is universal (does not depend on f)
- σ_{f} is bounded above and below by positive constants.
\rightarrow For all "non-degenerate" fields: same near-diagonal behavior.

Key observation

In the following f is a C^{p+1} Gaussian field such that

$$
\forall x \in B(0, R), \quad \operatorname{det} \operatorname{Cov}\left(\left(\partial^{\alpha} f(x)\right)_{|\alpha| \leq p+1}\right)>0 .
$$

Lemma

For R small enough and all $\underline{x} \in B(0, R)^{p} \backslash \Delta$,

$$
\rho_{f}(\underline{x})=Q(\underline{x}) \sigma_{f}(\underline{x}),
$$

where

- Q is universal (does not depend on f)
- σ_{f} is bounded above and below by positive constants.
\rightarrow For all "non-degenerate" fields: same near-diagonal behavior.
\rightarrow Finiteness of moments is true for a random polynomial g (Bezout).

Key observation

In the following f is a C^{p+1} Gaussian field such that

$$
\forall x \in B(0, R), \quad \operatorname{det} \operatorname{Cov}\left(\left(\partial^{\alpha} f(x)\right)_{|\alpha| \leq p+1}\right)>0 .
$$

Lemma

For R small enough and all $\underline{x} \in B(0, R)^{p} \backslash \Delta$,

$$
\rho_{f}(\underline{x})=Q(\underline{x}) \sigma_{f}(\underline{x}),
$$

where

- Q is universal (does not depend on f)
- σ_{f} is bounded above and below by positive constants.
\rightarrow For all "non-degenerate" fields: same near-diagonal behavior.
\rightarrow Finiteness of moments is true for a random polynomial g (Bezout).

$$
\rho_{f} \leq \frac{\sup \sigma_{f}}{\inf \sigma_{g}} \rho_{g} \in L^{1}(B(0, R))
$$

Extracting the singularity

$$
\rho_{f}(\underline{x})=\frac{\mathbb{E}\left[\prod_{k=1}^{p}\left|\operatorname{det} \operatorname{Hess} f\left(x_{k}\right)\right| \mid \nabla f\left(x_{1}\right)=\ldots=\nabla f\left(x_{p}\right)=0\right]}{\sqrt{\operatorname{det} 2 \pi \operatorname{Cov}\left(\nabla f\left(x_{1}\right), \ldots, \nabla f\left(x_{p}\right)\right)}} .
$$

Extracting the singularity

$$
\rho_{f}(\underline{x})=\frac{\mathbb{E}\left[\prod_{k=1}^{p}\left|\operatorname{det} \operatorname{Hess} f\left(x_{k}\right)\right| \mid \nabla f\left(x_{1}\right)=\ldots=\nabla f\left(x_{p}\right)=0\right]}{\sqrt{\operatorname{det} 2 \pi \operatorname{Cov}\left(\nabla f\left(x_{1}\right), \ldots, \nabla f\left(x_{p}\right)\right)}} .
$$

We need to understand the near-diagonal degeneracy of the vector

$$
\left(\nabla f\left(x_{1}\right), \ldots, \nabla f\left(x_{p}\right), \operatorname{Hess} f\left(x_{k}\right)\right) \quad \text { for } 1 \leq k \leq p
$$

Extracting the singularity

$$
\rho_{f}(\underline{x})=\frac{\mathbb{E}\left[\prod_{k=1}^{p}\left|\operatorname{det} \operatorname{Hess} f\left(x_{k}\right)\right| \mid \nabla f\left(x_{1}\right)=\ldots=\nabla f\left(x_{p}\right)=0\right]}{\sqrt{\operatorname{det} 2 \pi \operatorname{Cov}\left(\nabla f\left(x_{1}\right), \ldots, \nabla f\left(x_{p}\right)\right)}} .
$$

We need to understand the near-diagonal degeneracy of the vector

$$
\left(\nabla f\left(x_{1}\right), \ldots, \nabla f\left(x_{p}\right), \operatorname{Hess} f\left(x_{k}\right)\right) \quad \text { for } 1 \leq k \leq p
$$

\rightarrow In dimension 1: divided differences (Hermite-Lagrange interpolation)

Extracting the singularity

$$
\rho_{f}(\underline{x})=\frac{\mathbb{E}\left[\prod_{k=1}^{p}\left|\operatorname{det} \operatorname{Hess} f\left(x_{k}\right)\right| \mid \nabla f\left(x_{1}\right)=\ldots=\nabla f\left(x_{p}\right)=0\right]}{\sqrt{\operatorname{det} 2 \pi \operatorname{Cov}\left(\nabla f\left(x_{1}\right), \ldots, \nabla f\left(x_{p}\right)\right)}} .
$$

We need to understand the near-diagonal degeneracy of the vector

$$
\left(\nabla f\left(x_{1}\right), \ldots, \nabla f\left(x_{p}\right), \operatorname{Hess} f\left(x_{k}\right)\right) \quad \text { for } 1 \leq k \leq p
$$

\rightarrow In dimension 1: divided differences (Hermite-Lagrange interpolation)
\rightarrow No well-poised interpolation in higher dimensions (Mairhuber-Curtis)

Extracting the singularity

Observation:

\rightarrow Divided difference is a disguised Gram-Schmidt orthonormalization

Extracting the singularity

Observation:

\rightarrow Divided difference is a disguised Gram-Schmidt orthonormalization
Let δ_{x} be the evaluation map at point x. For $\underline{x}=\left(x_{1}, \ldots, x_{p}\right) \in \mathbb{R}^{p} \backslash \Delta$,

$$
\delta_{\underline{x}}=\left(\begin{array}{c}
\delta_{x_{1}} \\
\delta_{x_{2}} \\
\vdots \\
\delta_{x_{p}}
\end{array}\right)=A(\underline{x})\left(\begin{array}{c}
\delta_{x_{1}} \\
\left\|x_{x_{1}}\right\| \\
\frac{\delta_{x_{2}}-\operatorname{Proj}_{\delta_{x_{1}}}\left(\delta_{x_{2}}\right)}{}\left\|\delta_{x_{2}}-\operatorname{Proj}_{\delta_{x_{1}}}\left(\delta_{x_{2}}\right)\right\| \\
\vdots \\
\frac{\delta_{x_{p}}-\operatorname{Proj}_{\mathrm{S}_{\text {pan }}\left(\delta_{x_{1}}, \ldots, \delta_{x_{p-1}}\right)}\left(\delta_{x_{p}}\right)}{\left\|\delta_{x_{p}}-\operatorname{Proj} \mathrm{S}_{\operatorname{Span}\left(\delta_{x_{1}}, \ldots, \delta_{x_{p-1}}\right)}\left(\delta_{x_{p}}\right)\right\|}
\end{array}\right)
$$

Extracting the singularity

Observation:

\rightarrow Divided difference is a disguised Gram-Schmidt orthonormalization
Let δ_{x} be the evaluation map at point x. For $\underline{x}=\left(x_{1}, \ldots, x_{p}\right) \in \mathbb{R}^{p} \backslash \Delta$,

$$
\delta_{\underline{x}}=\left(\begin{array}{c}
\delta_{x_{1}} \\
\delta_{x_{2}} \\
\vdots \\
\delta_{x_{p}}
\end{array}\right)=A(\underline{x})\left(\begin{array}{c}
\frac{\delta_{x_{1}}}{\left\|\delta_{x_{1}}\right\|} \\
\frac{\delta_{x_{2}}-\operatorname{Proj}_{\delta_{x_{1}}}\left(\delta_{x_{2}}\right)}{\left\|\delta_{x_{2}}-\operatorname{Proj}_{\delta_{x_{1}}}\left(\delta_{x_{2}}\right)\right\|} \\
\vdots \\
\frac{\delta_{x_{p}}-\operatorname{Proj}_{\mathrm{Span}\left(\delta_{x_{1}}, \ldots, \delta_{x_{p-1}}\right)}\left(\delta_{x_{p}}\right)}{\left\|\delta_{x_{p}}-\operatorname{Proj}_{\operatorname{Span}\left(\delta_{x_{1}}, \ldots, \delta_{x_{p-1}}\right)}\left(\delta_{x_{p}}\right)\right\|}
\end{array}\right)
$$

Evaluating at a function f :

$$
\delta_{\underline{x}} f=\left(\begin{array}{c}
f\left(x_{1}\right) \\
f\left(x_{2}\right) \\
\vdots \\
f\left(x_{p}\right)
\end{array}\right)=A(\underline{x})\left(\begin{array}{c}
f(x) \\
f[x, y] \\
\vdots \\
f\left[x_{1}, \ldots, x_{p}\right]
\end{array}\right)
$$

Extracting the singularity

Let's do the same thing in higher dimension !

Extracting the singularity

Let's do the same thing in higher dimension !
Let $\underline{x}=\left(x_{1}, \ldots, x_{p}\right) \in\left(\mathbb{R}^{d}\right)^{p} \backslash \Delta$. Then

$$
\nabla_{\underline{x}} f=\left(\begin{array}{c}
\nabla f\left(x_{1}\right) \\
\nabla f\left(x_{2}\right) \\
\vdots \\
\nabla f\left(x_{p}\right)
\end{array}\right)=Q_{0}(\underline{x}) N_{f}(\underline{x}),
$$

where

- $Q_{0}(\underline{x})$ is a universal square matrix of size $d p$,
- $N_{f}(\underline{x})$ is a vector of $d p$ "orthonormal" linear forms evaluated in f.

Extracting the singularity

Let's do the same thing in higher dimension !
Let $\underline{x}=\left(x_{1}, \ldots, x_{p}\right) \in\left(\mathbb{R}^{d}\right)^{p} \backslash \Delta$. Then

$$
\nabla_{\underline{x}} f=\left(\begin{array}{c}
\nabla f\left(x_{1}\right) \\
\nabla f\left(x_{2}\right) \\
\vdots \\
\nabla f\left(x_{p}\right)
\end{array}\right)=Q_{0}(\underline{x}) N_{f}(\underline{x}),
$$

where

- $Q_{0}(\underline{x})$ is a universal square matrix of size $d p$,
- $N_{f}(\underline{x})$ is a vector of $d p$ "orthonormal" linear forms evaluated in f.
$\sqrt{\operatorname{det} \operatorname{Cov}\left(\nabla f\left(x_{1}\right), \ldots, \nabla f\left(x_{p}\right)\right)}=\left|\operatorname{det} Q_{0}(\underline{x})\right| \sqrt{\operatorname{det} \operatorname{Cov}\left(N_{f}(\underline{x})\right)}$.

Extracting the singularity

Similarly,

$\mathbb{E}\left[\prod_{k=1}^{p}\left|\operatorname{det} \operatorname{Hess} f\left(x_{k}\right)\right| \mid \nabla_{\underline{x}} f=0\right]=\left(\prod_{k=1}^{p} Q_{k}(\underline{x})\right) \mathbb{E}\left[\prod_{k=1}^{p}\left|H_{k}(\underline{x})\right| \mid N_{f}(\underline{x})=0\right]$

Extracting the singularity

Similarly,
$\mathbb{E}\left[\prod_{k=1}^{p}\left|\operatorname{det} \operatorname{Hess} f\left(x_{k}\right)\right| \mid \nabla_{\underline{x}} f=0\right]=\left(\prod_{k=1}^{p} Q_{k}(\underline{x})\right) \mathbb{E}\left[\prod_{k=1}^{p}\left|H_{k}(\underline{x})\right| \mid N_{f}(\underline{x})=0\right]$
and thus

$$
\rho_{f}(\underline{x})=\underbrace{\frac{\left(\prod_{k=1}^{p} Q_{k}(\underline{x})\right)}{Q_{0}(x)}}_{Q(\underline{x})} \underbrace{\frac{\mathbb{E}\left[\prod_{k=1}^{p}\left|H_{k}(\underline{x})\right| \mid N_{f}(\underline{x})=0\right]}{\sqrt{\operatorname{det} \operatorname{Cov}\left(N_{f}(\underline{x})\right)}}}_{\sigma_{f}(\underline{x})} .
$$

Extracting the singularity

Similarly,
$\mathbb{E}\left[\prod_{k=1}^{p}\left|\operatorname{det} \operatorname{Hess} f\left(x_{k}\right)\right| \mid \nabla_{\underline{x}} f=0\right]=\left(\prod_{k=1}^{p} Q_{k}(\underline{x})\right) \mathbb{E}\left[\prod_{k=1}^{p}\left|H_{k}(\underline{x})\right| \mid N_{f}(\underline{x})=0\right]$
and thus

$$
\rho_{f}(\underline{x})=\underbrace{\frac{\left(\prod_{k=1}^{p} Q_{k}(\underline{x})\right)}{Q_{0}(x)}}_{Q(\underline{x})} \underbrace{\frac{\mathbb{E}\left[\prod_{k=1}^{p}\left|H_{k}(\underline{x})\right| \mid N_{f}(\underline{x})=0\right]}{\sqrt{\operatorname{det} \operatorname{Cov}\left(N_{f}(\underline{x})\right)}}}_{\sigma_{f}(\underline{x})} .
$$

\rightarrow The Kac-Rice decomposition is achieved

Extracting the singularity

Similarly,
$\mathbb{E}\left[\prod_{k=1}^{p}\left|\operatorname{det} \operatorname{Hess} f\left(x_{k}\right)\right| \mid \nabla_{\underline{x}} f=0\right]=\left(\prod_{k=1}^{p} Q_{k}(\underline{x})\right) \mathbb{E}\left[\prod_{k=1}^{p}\left|H_{k}(\underline{x})\right| \mid N_{f}(\underline{x})=0\right]$,
and thus

$$
\rho_{f}(\underline{x})=\underbrace{\underbrace{\left(\prod_{k}^{p} Q_{k}(\underline{x})\right)}_{k=1}}_{Q(\underline{x})} Q_{0}(x) \quad \underbrace{\frac{\mathbb{E}\left[\prod_{k=1}^{p}\left|H_{k}(\underline{x})\right| \mid N_{f}(\underline{x})=0\right]}{\sqrt{\operatorname{det} \operatorname{Cov}\left(N_{f}(\underline{x})\right)}} .}_{\sigma_{f}(\underline{x})}
$$

\rightarrow The Kac-Rice decomposition is achieved
It remains to show that:

- there is an adequate scalar product for evaluation maps
- the function σ_{f} is bounded above and below by positive constants.

Kergin interpolation

Theorem (Kergin (1980))
For $\underline{x}=\left(x_{0}, x_{1}, \ldots, x_{p}\right) \in\left(\mathbb{R}^{d}\right)^{p+1}$ there is a projector

$$
\Pi_{\underline{x}}: \mathcal{C}^{p}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}_{p}\left[X_{1}, \ldots, X_{d}\right]
$$

such that if the multiplicity of x_{k} in \underline{x} is n then

$$
\forall|\alpha|<n, \quad \partial^{\alpha}\left(\Pi_{\underline{x}} f\right)\left(x_{k}\right)=\partial^{\alpha} f\left(x_{k}\right) .
$$

Kergin interpolation

Theorem (Kergin (1980))

For $\underline{x}=\left(x_{0}, x_{1}, \ldots, x_{p}\right) \in\left(\mathbb{R}^{d}\right)^{p+1}$ there is a projector

$$
\Pi_{\underline{x}}: \mathcal{C}^{p}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}_{p}\left[X_{1}, \ldots, X_{d}\right]
$$

such that if the multiplicity of x_{k} in \underline{x} is n then

$$
\forall|\alpha|<n, \quad \partial^{\alpha}\left(\Pi_{\underline{x}} f\right)\left(x_{k}\right)=\partial^{\alpha} f\left(x_{k}\right) .
$$

The polynomial $\Pi_{\underline{x}} f$ does not depend only on $\left(f\left(x_{1}\right), \ldots, f\left(x_{p}\right)\right)$.

Kergin interpolation

Theorem (Kergin (1980))
For $\underline{x}=\left(x_{0}, x_{1}, \ldots, x_{p}\right) \in\left(\mathbb{R}^{d}\right)^{p+1}$ there is a projector

$$
\Pi_{\underline{x}}: \mathcal{C}^{p}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}_{p}\left[X_{1}, \ldots, X_{d}\right]
$$

such that if the multiplicity of x_{k} in \underline{x} is n then

$$
\forall|\alpha|<n, \quad \partial^{\alpha}\left(\Pi_{\underline{x}} f\right)\left(x_{k}\right)=\partial^{\alpha} f\left(x_{k}\right) .
$$

The polynomial $\Pi_{\underline{x}} f$ does not depend only on $\left(f\left(x_{1}\right), \ldots, f\left(x_{p}\right)\right)$.
\rightarrow We see $\nabla_{\underline{x}}$ as a family of linear forms on a finite dimensional space

Kergin interpolation

Theorem (Kergin (1980))
For $\underline{x}=\left(x_{0}, x_{1}, \ldots, x_{p}\right) \in\left(\mathbb{R}^{d}\right)^{p+1}$ there is a projector

$$
\Pi_{\underline{x}}: \mathcal{C}^{p}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}_{p}\left[X_{1}, \ldots, X_{d}\right]
$$

such that if the multiplicity of x_{k} in \underline{x} is n then

$$
\forall|\alpha|<n, \quad \partial^{\alpha}\left(\Pi_{\underline{x}} f\right)\left(x_{k}\right)=\partial^{\alpha} f\left(x_{k}\right) .
$$

The polynomial $\Pi_{\underline{x}} f$ does not depend only on $\left(f\left(x_{1}\right), \ldots, f\left(x_{p}\right)\right)$.
\rightarrow We see $\nabla_{\underline{x}}$ as a family of linear forms on a finite dimensional space
\rightarrow When points collapse, $\Pi_{\underline{x}} f$ is the Taylor polynomial of f of degree p

Kergin interpolation

Theorem (Kergin (1980))
For $\underline{x}=\left(x_{0}, x_{1}, \ldots, x_{p}\right) \in\left(\mathbb{R}^{d}\right)^{p+1}$ there is a projector

$$
\Pi_{\underline{x}}: \mathcal{C}^{p}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}_{p}\left[X_{1}, \ldots, X_{d}\right]
$$

such that if the multiplicity of x_{k} in \underline{x} is n then

$$
\forall|\alpha|<n, \quad \partial^{\alpha}\left(\Pi_{\underline{x}} f\right)\left(x_{k}\right)=\partial^{\alpha} f\left(x_{k}\right) .
$$

The polynomial $\Pi_{\underline{x}} f$ does not depend only on $\left(f\left(x_{1}\right), \ldots, f\left(x_{p}\right)\right)$.
\rightarrow We see $\nabla_{\underline{x}}$ as a family of linear forms on a finite dimensional space \rightarrow When points collapse, $\Pi_{\underline{x}} f$ is the Taylor polynomial of f of degree p Boundedness of σ_{f} follows from:

- Compactness properties of $\mathbb{R}_{p}\left[X_{1}, \ldots, X_{d}\right]$
- Non-degeneracy of the $p+1$ jets of f

Possible extensions and conjecture

Extensions

- Valid in a more general framework $\Pi_{\underline{x}}: W \rightarrow V$.
\rightarrow Critical points (Schwarz), holomorphic (Cauchy-Riemann), ...

Possible extensions and conjecture

Extensions

- Valid in a more general framework $\Pi_{\underline{x}}: W \rightarrow V$. \rightarrow Critical points (Schwarz), holomorphic (Cauchy-Riemann), ...
- Valid for random nodal volume of $F: \mathbb{R}^{d} \rightarrow \mathbb{R}^{m}$ with $m \leq d$.

Possible extensions and conjecture

Extensions

- Valid in a more general framework $\Pi_{\underline{x}}: W \rightarrow V$. \rightarrow Critical points (Schwarz), holomorphic (Cauchy-Riemann), ...
- Valid for random nodal volume of $F: \mathbb{R}^{d} \rightarrow \mathbb{R}^{m}$ with $m \leq d$.
- Valid for Gaussian sections of vector bundles

Possible extensions and conjecture

Extensions

- Valid in a more general framework $\Pi_{\underline{x}}: W \rightarrow V$. \rightarrow Critical points (Schwarz), holomorphic (Cauchy-Riemann), ...
- Valid for random nodal volume of $F: \mathbb{R}^{d} \rightarrow \mathbb{R}^{m}$ with $m \leq d$.
- Valid for Gaussian sections of vector bundles

Work in progress

Possible extensions and conjecture

Extensions

- Valid in a more general framework $\Pi_{\underline{x}}: W \rightarrow V$. \rightarrow Critical points (Schwarz), holomorphic (Cauchy-Riemann), ...
- Valid for random nodal volume of $F: \mathbb{R}^{d} \rightarrow \mathbb{R}^{m}$ with $m \leq d$.
- Valid for Gaussian sections of vector bundles

Work in progress

- Non-Gaussian framework \rightarrow Shot-noise process, ...

Possible extensions and conjecture

Extensions

- Valid in a more general framework $\Pi_{\underline{x}}: W \rightarrow V$. \rightarrow Critical points (Schwarz), holomorphic (Cauchy-Riemann), ...
- Valid for random nodal volume of $F: \mathbb{R}^{d} \rightarrow \mathbb{R}^{m}$ with $m \leq d$.
- Valid for Gaussian sections of vector bundles

Work in progress

- Non-Gaussian framework \rightarrow Shot-noise process, ...

Possible extensions and conjecture

Extensions

- Valid in a more general framework $\Pi_{\underline{x}}: W \rightarrow V$. \rightarrow Critical points (Schwarz), holomorphic (Cauchy-Riemann), ...
- Valid for random nodal volume of $F: \mathbb{R}^{d} \rightarrow \mathbb{R}^{m}$ with $m \leq d$.
- Valid for Gaussian sections of vector bundles

Work in progress

- Non-Gaussian framework \rightarrow Shot-noise process, ...
- CLT by the method of moments \rightarrow Polynomial concentration of nodal volume

Possible extensions and conjecture

Extensions

- Valid in a more general framework $\Pi_{\underline{x}}: W \rightarrow V$. \rightarrow Critical points (Schwarz), holomorphic (Cauchy-Riemann), ...
- Valid for random nodal volume of $F: \mathbb{R}^{d} \rightarrow \mathbb{R}^{m}$ with $m \leq d$.
- Valid for Gaussian sections of vector bundles

Work in progress

- Non-Gaussian framework \rightarrow Shot-noise process, ...
- CLT by the method of moments \rightarrow Polynomial concentration of nodal volume
- Case of Berry random waves

Possible extensions and conjecture

Extensions

- Valid in a more general framework $\Pi_{\underline{x}}: W \rightarrow V$. \rightarrow Critical points (Schwarz), holomorphic (Cauchy-Riemann), ...
- Valid for random nodal volume of $F: \mathbb{R}^{d} \rightarrow \mathbb{R}^{m}$ with $m \leq d$.
- Valid for Gaussian sections of vector bundles

Work in progress

- Non-Gaussian framework \rightarrow Shot-noise process, ...
- CLT by the method of moments \rightarrow Polynomial concentration of nodal volume
- Case of Berry random waves
- Exponential moment for analytic fields \rightarrow Exponential concentration of nodal volume

References

- M. Ancona and T. Letendre. "Zeros of smooth stationary Gaussian processes". In: Electron. J. Probab. 26 (2021), Paper No. 68, 81.
- D. Armentano, J. M. Azaïs, F. Dalmao, J. R. León, and E. Mordecki. "On the finiteness of the moments of the measure of level sets of random fields". In: Brazilian Journal of Probability and Statistics 37.1 (2023), pp. 219-245.
- J.-M. Azaïs and C. Delmas. "Mean number and correlation function of critical points of isotropic Gaussian fields and some results on GOE random matrices". In: Stochastic Processes and their Applications 150 (2022), pp. 411-445.
- D. Beliaev, M. McAuley, and S. Muirhead. "A central limit theorem for the number of excursion set components of Gaussian fields". In: arXiv preprint arXiv:2205.09085 (2022).
- D. Beliaev, V. Cammarota, and I. Wigman. "Two point function for critical points of a random plane wave". In: International Mathematics Research Notices 2019.9 (2019), pp. 2661-2689
- J. Cuzick. "Conditions for finite moments of the number of zero crossings for Gaussian processes". In: Ann. Probability 3.5 (1975), pp. 849-858.
- L. Gass. "Cumulants asymptotics for the zeros counting measure of real Gaussian processes". 2021. To appear in EJP
- Gass, L., Stecconi, M. (2023). "The number of critical points of a Gaussian field: finiteness of moments". arXiv preprint arXiv:2305.17586.
- P. Kergin. "A natural interpolation of \mathcal{C}^{k} functions". In: Journal of Approximation Theory 29.4 (1980), pp. 278-293
- S. Ladgham and R. Lachièze-Rey. "Local repulsion of planar Gaussian critical points". In: arXiv preprint arXiv:2209.04150 (2022).
- F. Nazarov and M. Sodin. "Asymptotic laws for the spatial distribution and the number of connected components of zero sets of Gaussian random functions". In: Zh. Mat. Fiz. Anal. Geom. 12.3 (2016), pp. 205-278.
- Sarnak, P. and Wigman, I. (2019). "Topologies of nodal sets of random band-limited functions". Communications on pure and applied mathematics, 72(2), 275-342.
- M. Stecconi. "Kac-Rice formula for transverse intersections". In: Analysis and Mathematical Physics 12.2 (2022), p. 44.

