Replication of arithmetic random waves

Raphaël Lachièze-Rey
With Loïc Thomassey
(MAP5, Université Paris Cité)

Helmholtz equation

Eigenmodes: Solutions F_{k} of

$$
\Delta F+k^{2} F=0
$$

- Δ : Laplacian operator on a manifold (here \mathbb{R}^{2} or \mathbb{T}^{2})
- k : wavenumber
- Spatial component of solutions of d'Alembert wave propagation equation
- On $\mathbb{R}: F_{k}(x)=a \cos (k x)+b \sin (k x)$
- On \mathbb{R}^{2} : for $u \in \mathbb{R}^{2},\|u\|=k$

$$
\begin{aligned}
& F_{u}(x)=\cos (\langle u, x\rangle) \text { or } \sin (\langle u, x\rangle) \\
& + \text { linear combinations }
\end{aligned}
$$

Eigenmodes on \mathbb{T}^{2}

$$
F_{u}(x)=\cos (\langle u, x\rangle) \text { or } \sin (\langle u, x\rangle)
$$

- F_{u} continuous on $\mathbb{T}^{2} \Leftrightarrow F_{u}$ is (1,1)-periodic $\Leftrightarrow u \in \mathbb{Z}^{2}$
- $\Delta F_{u}(x)=-4 \pi^{2}\left(u_{1}^{2}+u_{2}^{2}\right) F_{u}(x)=-4 \pi^{2}\|u\|^{2} F_{u}(x)$
- For $n \in \mathbb{N}$, the nth eigenspace is generated by

$$
\mathcal{E}_{n}=\left\{F_{u}:\|u\|^{2}=n\right\} \quad\left(\text { Solutions of } \Delta F+4 \pi^{2} n F=0\right)
$$

- In particular, n has to be written as the sum of two squares.

$$
\mathscr{S}:=\left\{n: \mathcal{E}_{n} \neq 0\right\}
$$

- A prime number p is the sum of two squares if $p=2$ or $p \equiv 1 \bmod 4$, in this case

$$
p=a_{p}^{2}+b_{p}^{2}=\left(a_{p}+i b_{p}\right)\left(a_{p}-i b_{p}\right)
$$

- General case: $n \in \mathscr{S}$ if

$$
n=p_{1}^{\alpha_{1}} \ldots p_{m}^{\alpha_{m}} q_{1}^{2 \beta_{1}} \ldots q_{l}^{2 \beta_{l}}
$$

with $p_{i}=2$ or $p_{i} \equiv 1, q_{i} \equiv 3$. Several solutions z_{j}

$$
\begin{aligned}
n & =z_{j} \bar{z}_{j} \\
z_{j} & =\prod_{i}\left(a_{p_{i}} \pm i b_{p_{i}}\right)^{\alpha_{i}} \times \underbrace{Z_{n}}_{q_{1}^{\beta_{1} \ldots q_{l}^{\beta_{l}}}}
\end{aligned}
$$

- Cardinality

$$
\mathcal{N}_{n}:=\# \mathcal{E}_{n}=\left\{\begin{array}{l}
0 \text { if some } q_{i} \text { has odd valuation } \\
4 \prod_{i=1}^{m}\left(1+\alpha_{i}\right) \text { otherwise }
\end{array}\right.
$$

Arithmetic Random waves

- For most $n \in \mathscr{S}$

$$
\mathcal{N}_{n}=\ln (n)^{\ln (2) / 2+o(1)}
$$

(i.e. for a density 1 subsequence \mathscr{S}^{\prime} of integers $n \subset \mathscr{S}$),

- Let $F_{n}: \sqrt{n} \mathbb{T}^{2} \rightarrow \mathbb{R}$ the Planck scale Arithmetic Random Wave (ARW):

$$
F_{n}(x)=\frac{1}{\sqrt{\mathcal{N}_{n}}} \sum_{u:\|u\|^{2}=n}\left[a_{u} \cos \left(\left\langle x, \frac{u}{\sqrt{n}}\right\rangle\right)+b_{u} \sin \left(\left\langle x, \frac{u}{\sqrt{n}}\right\rangle\right)\right]
$$

- The covariance function is for $x, y \in \sqrt{n} \mathbb{T}^{2}$

$$
\begin{aligned}
r_{n}(x-y) & =\operatorname{Cov}\left(F_{n}(x), F_{n}(y)\right)=\mathbb{E}\left[F_{n}(x) F_{n}(y)\right] \\
& =\frac{1}{\mathcal{N}_{n}} \sum_{u \in \mathbb{Z}^{2}:\|u\|^{2}=n} \cos \left(\left\langle x-y, \frac{u}{\sqrt{n}}\right\rangle\right) .
\end{aligned}
$$

Convergence of the covariance function

$$
r_{n}(x)=\frac{1}{\mathcal{N}_{n}} \sum_{u \in \mathbb{Z}^{2}:\|u\|^{2}=n} \cos (\langle x, u / \sqrt{n}\rangle)=\int_{\mathbb{S}^{1}} \cos (\langle x, u\rangle) d \mu_{n}(u)
$$

where $\mu_{n}:=\frac{1}{\mathcal{N}_{n}} \sum_{u \in \mathbb{Z}^{2}:\|u\|^{2}=n} \delta \frac{u}{\sqrt{n}} \xrightarrow[n \rightarrow \infty]{ } \mu_{\mathbb{S}^{1}}$ Haar measure on \mathbb{S}^{1}
for $n \in \mathscr{S}^{\prime \prime} \subset \mathbb{N}$ of density 1 . Pointwise convergence to the 0 -Bessel function

$$
r_{n}(x) \rightarrow J_{0}(x)=\int \cos (\langle x, u\rangle) d \mu_{\mathbb{S}^{1}}(u)
$$

Remark: J_{0} is the covariance function of an isotropic stationary field F_{∞} on \mathbb{R}^{2}, the Random planar wave model:

$$
\operatorname{Cov}\left(F_{\infty}(x), F_{\infty}(y)\right)=J_{0}(x-y)
$$

Berry's conjecture on nodal lines

Expectation: Oravecz, Rudnick and Wigman '08

$$
\begin{aligned}
\mathscr{L}_{B} & :=\text { length }\left\{F_{n}^{-1}(\{0\}) \cap B\right\}, B \subset \sqrt{n} \mathbb{T}^{2} \\
\mathbb{E}\left(\mathscr{L}_{B}\right) & =|B| \frac{1}{2 \sqrt{2}}
\end{aligned}
$$

Variance: Krishnapur, Kurlberg, Wigman 2011 : For $n \in \mathscr{S}^{\prime}$

$$
\operatorname{Var}\left(\mathscr{L}_{\sqrt{n} \mathbb{T}^{2}}\right) \sim \frac{c_{n}}{512} \frac{n^{2}}{\mathcal{N}_{n}^{2}} \text { where } c_{n} \in[1 / 2,1] \text { "oscillates" as } n \rightarrow \infty
$$

Figure: Nodal lines (L. Thomassey)

Figure: Excursion (Simon Coste)

Small balls and full correlation

- Generalisation by Benatar, Marinucci, Wigman 2020 to small balls: For $\alpha>0, s_{n}>n^{\alpha}$,

$$
\mathscr{L}_{s_{n}}:=\operatorname{length}\left\{F_{n}^{-1}(\{0\}) \cap \mathrm{B}\left(s_{n}\right)\right\} \operatorname{Var}\left(\mathscr{L}_{s_{n}}\right) \sim c_{n}\left|\mathrm{~B}\left(s_{n}\right)\right|^{2} \frac{1}{\mathcal{N}_{n}^{2}}
$$

- Furthermore, there is full correlation between small balls and $\sqrt{n} \mathbb{T}^{2}$:

$$
\sup _{s \geqslant n^{\alpha}}\left|\operatorname{Corr}\left(\mathscr{L}_{s}, \mathscr{L}_{\sqrt{n} \mathbb{T}^{2}}\right)-1\right| \rightarrow 0 .
$$

- Based on the Kac-Rice formula and computations of the spectral quasi-correlations

$$
\#\left\{\left(u_{1}, \ldots, u_{l}\right) \in\left(\mathbb{Z}^{2}\right)^{l}: 0<\left|u_{1}+\cdots+u_{l}\right|<\varepsilon,\left\|u_{i}\right\|^{2}=n\right\}
$$

- Interpretation in [Todino 2020] (no full correlation on \mathbb{S}^{2})

Phase transition

- There is full correlation at polynomial scales [BMW 20']. Furthermore

$$
\widetilde{\mathscr{L}}_{n^{\alpha}}:=\frac{\mathscr{L}_{n^{\alpha}}-\mathbb{E}\left(\mathscr{L}_{n^{\alpha}}\right)}{\sqrt{\mathrm{Var}}} \rightarrow \text { sum of } \mathrm{Chi}^{2} \text { variables }
$$

- Drastic change of behaviour at logarithmic scales [Dierickx, Nourdin, Peccati and Rossi '19]

$$
\widetilde{\mathscr{L}}_{\ln (n)^{A}} \rightarrow \mathcal{N}(0,1) \text { for } A \leqslant \frac{1}{18} \ln (\pi / 2)
$$

- There are conjectures about the phase transition, i.e. the minimal scale $\ln (n)^{A_{c}}$ where full correlation occurs:
- [Sartori '21] Full correlation for $s_{n}=\ln (n)^{B}$ with $B=\frac{29}{6} \ln (2)$
- Hence $A<A_{c}<B$

What happens above the phase transition?

- Intuitively, the nodal lines replicate almost identically at distance $\ln (n)^{A}\left(A>A_{c}\right)$.
- Say that τ is an ε-almost period of a function $F: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}$ if

$$
\sup _{t}\|F(t+\tau)-F(t)\|<\varepsilon
$$

- A function $F: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is almost periodic if for all $\varepsilon>0$ there is a relatively denset set of ε-periods.
- A sequence of functions $\left(F_{n}\right)_{n \geqslant 1}$ is said to be $\left(t_{n}\right)_{n \geqslant 1}$-almost periodic for some τ_{n} with $1 \leqslant\left\|\tau_{n}\right\| \leqslant t_{n}$ if

$$
\sup _{t}\left\|F_{n}\left(t+\tau_{n}\right)-F_{n}(t)\right\| \rightarrow 0
$$

- The (Planck scale) ARW are trivially (\sqrt{n})-(almost) periodic. \rightarrow Are the ARW $\left(\ln (n)^{A}\right)_{n \geqslant 1}$-almost periodic?

Are the ARW $\left(\ln (n)^{A}\right)_{n \geqslant 1}$-almost periodic?

Theorem (Thomassey, L. 23+)
The covariance function is almost periodic at intermediates scales: there is an almost period τ_{n} such that asymptotically for $\alpha>0$

$$
\begin{aligned}
& \ln (n)^{A} \ll\left\|\tau_{n}\right\| \ll n^{\alpha} \\
& \quad \ldots . \text { actually }\left\|\tau_{n}\right\|=O(\underbrace{\exp \left(\ln (n)^{\ln (2) / 2+}\right.}_{\exp \left(\mathcal{N}_{n}^{1+}\right)})
\end{aligned}
$$

and the ARW and its derivatives are $\left(\tau_{n}\right)$-almost periodic : for β any multi-index, with high probability

$$
\sup _{t \in \sqrt{n} \mathbb{T}^{2}}\left|\partial^{\beta} F_{n}(t)-\partial^{\beta} F_{n}\left(t+\tau_{n}\right)\right|=o\left(\ln (n)^{-\delta}\right), \delta>0
$$

Remark: Much smaller than the actual exact period \sqrt{n}.

Almost periodicity

Figure: $n=10^{9}$: Game of the 7 differences between F_{n} and $F_{n}^{\tau_{n}}=F_{n}\left(\tau_{n}+\cdot\right)$

Proof

(1) Show that $r\left(\tau_{n}\right)>1-\exp \left(-\ln (n)^{0+}\right)$ (Dirichlet principle)
(2) Use concentration results about suprema of random Gaussian fields

$$
\sup _{x \in \sqrt{n} \mathbb{T}^{2}}\left|F_{n}-F_{n}^{\tau_{n}}\right|
$$

Consequences for nodal sets

- Geometric similarity: for φ continuous with compact support,

$$
\int_{F_{n}^{-1}(\{0\})} \varphi(t) \mathcal{H}^{1}(d t)-\int_{F_{n}^{-1}(\{0\})} \varphi\left(t+\tau_{n}\right) \mathcal{H}^{1}(d t) \xrightarrow[n \rightarrow \infty]{\mathscr{L}} 0
$$

Proof.

First prove the convergence in law in $\mathcal{C}^{2}(\overline{\operatorname{Supp}(\varphi)} \times \overline{\operatorname{Supp}(\varphi)})$

$$
\left(F_{n}, F_{n}^{\tau_{n}}\right) \rightarrow\left(F_{\infty}, F_{\infty}\right)
$$

where F is the planar RPW model on \mathbb{R}^{2}, for the topology of \mathcal{C}^{2} uniform convergence on each compact, and then prove the continuity of the mapping

$$
F \rightarrow \int_{F^{-1}(0)} \varphi(t) \mathcal{H}^{1}(d t)
$$

To do list:

- Do we have with high probability

$$
\operatorname{Topology}\left(F_{n}^{-1}(\{0\}) \cap B\right) \sim \operatorname{Topology}\left(F_{n}^{-1}(\{0\}) \cap\left(B+\tau_{n}\right)\right) ?
$$

- Replication of phase singularities, i.e. (isolated) complex zeros of

$$
F_{n}+i F_{n}^{\prime}
$$

where F_{n}^{\prime} is an independent copy of F_{n} ?

Almost periods of trigonometric polynomials

Lemma
Let $N>1$ and

$$
r(x)=\frac{1}{N} \sum_{k=1}^{N} \gamma_{k}\left(2 \pi\left\langle u_{k}, x\right\rangle\right), x \in \mathbb{R}^{d}
$$

where the γ_{k} are 1-Lipschitz and 2π-periodic, and $u_{k} \in \mathbb{R}^{d}$. Then for $\varepsilon>0$, for some $1 \leqslant\|\tau\| \leqslant \varepsilon^{-N / d}$,

$$
|r(t+\tau)-r(t)| \leqslant c \varepsilon \quad(c \varepsilon \text {-almost periodic at scale } \tau)
$$

Application to ARW

- $d=2, N=\mathcal{N}_{n}=\ln (n)^{\ln (2) / 2+o(1)}$
- $u_{k} \in \mathbb{Z}^{2}$ such that $\left\|u_{k}\right\|^{2}=n$,
- $\tau_{n}^{\max }$ cannot be logarithmic if $\varepsilon_{n} \rightarrow 0$

$$
\varepsilon_{n}^{-\mathcal{N}_{n} / d}=\tau_{n}^{\max } \Leftrightarrow \ln \varepsilon_{n}=\frac{-d \ln \left(\tau_{n}^{\max }\right)}{\ln (n)^{\frac{\ln (2)}{2}+o(1)}} \xrightarrow[n \rightarrow \infty]{ }-\infty ?
$$

- $\varepsilon_{n}=\exp \left(-\ln (n)^{0+}\right)=\exp \left(-\mathcal{N}_{n}^{1+} / \mathcal{N}_{n}\right) \Rightarrow \tau \leqslant \exp \left(\mathcal{N}_{n}^{1+} / d\right)$

Lower bound

- [Dierickx, Nourdin, Peccati and Rossi '19]: $r_{n} \rightarrow J_{0}$ uniformly on $\mathrm{B}\left(\ln (n)^{A}\right)$, and

$$
J_{0}(t) \xrightarrow[t \rightarrow 0]{ } 0
$$

we necessarily have $\tau_{n}>\ln (n)^{A}$. Can we do better?

- Let $\mathcal{N}>1 ; u_{1}, \ldots, u_{\mathcal{N}} \in \mathbb{S}^{1}$ random and

$$
R_{\mathcal{N}}(x)=\frac{1}{\mathcal{N}} \sum_{i=1}^{\mathcal{N}} \cos \left(\left\langle u_{i}, x\right\rangle\right)
$$

- We want to show that for $\eta \in(0,1)$, for $\tau_{n} \sim \exp (\mathcal{N})$, whp

$$
\sup _{x \in \mathrm{~B}\left(\tau_{n}\right)} R_{\mathcal{N}}(x)<\eta
$$

\Rightarrow pseudo-periods are at least of scale $\exp \left(\mathcal{N}_{\square}\right)$.

Lower bound

Theorem (Dirichlet bound is almost optimal)

Assumptions:

- The system $\left(u_{1}, \ldots, u_{\mathcal{N}}\right)$ is shift-invariant on \mathbb{S}^{1}
- The $h\left(u_{i}\right)$ satisfy the Hoeffding type inequality for h bounded smooth

$$
\mathbb{P}\left(\left|\frac{1}{\mathcal{N}} \sum_{i=1}^{\mathcal{N}} h\left(u_{i}\right)-\mathbb{E}\left(h\left(u_{1}\right)\right)\right|>t\right)<\exp \left(-c t^{\gamma} \mathcal{N}\right)
$$

where $\gamma, c>0$ do not depend on h.
Typical example: i.i.d. uniform u_{i} on $\mathbb{S}^{1}(\gamma=2)$.
Then $R_{\mathcal{N}}$ is not almost periodic at scale $\exp \left(\mathcal{N}^{1-}\right)$:

$$
\sup _{\|\tau\| \in\left[1, \exp \left(\mathcal{N}^{1-}\right)\right]} R_{\mathcal{N}}(\tau)<\frac{1}{2} .
$$

Surprising

Hence the proportion of $\left(u_{1}, \ldots, u_{\mathcal{N}_{n}}\right)$ such that $R_{\mathcal{N}_{n}}$ does not have a "Dirichlet" pseudo period $\tau_{\mathcal{N}_{n}} \sim \exp \left(\mathcal{N}_{n}^{1-}\right)$ goes to 0 .

- Either the $\left(u_{1}, \ldots, u_{\mathcal{N}_{n}}\right)$ such that $\left\|u_{i}\right\|^{2}=n$ fall into this small subset of $\left(\mathbb{S}^{1}\right)^{\mathcal{N}_{n}}$ (i.e. the toy model of i.i.d. wavevectors u_{i} is not fit)
- Or there is full correlation between \mathcal{N}_{n}^{A} and $\exp \left(\mathcal{N}_{n}^{1-\varepsilon}\right)$ but no replication.

A more elaborate toy model

- Recall

$$
n=\prod_{j=1}^{k} p_{j}^{\alpha_{j}} \prod_{i=1}^{l} q_{i}^{2 \beta_{i}}
$$

where $p_{j}=2$ or $p_{j} \equiv 1$ and $q_{i} \equiv 3$. Furthermore, [Sartori 21] showed that for most $n \in \mathscr{S}, \forall j, \alpha_{j}=1$.

- Recall that

$$
p_{j} \equiv 1 \bmod 4 \Leftrightarrow p_{j}=a_{j}^{2}+b_{j}^{2}=z_{j} \overline{z_{j}} \text { with } z_{j}=a_{j}+i b_{j}
$$

- Hence for most n, the $u=a+i b$ solutions of $|u|^{2}=n$ are indexed by the $\eta=\left(\eta_{j}\right) \in\{-1,1\}^{k}$ via

$$
u_{\eta}:=\prod_{j=1}^{k}\left(a_{j}+i \eta_{j} b_{j}\right) \times Z_{n}=\sqrt{n} \exp \left(i \theta_{0}\right) \prod_{j=1}^{k} \exp \left(i \eta_{j} \theta_{j}\right)
$$

More elaborate toy model (Cont'd)

- The covariance function of the ARW is hence, with $k=\omega(n)$

$$
\begin{aligned}
r_{n}(t) & =\frac{1}{\mathcal{N}_{n}} \sum_{\substack{\eta \in\{-1,1\} \\
\nu \in\{ \pm 1, \pm i\}}} \nu \cos \left(2 \pi \frac{\left\langle u_{\eta}, t\right\rangle}{\sqrt{n}}\right) \\
& =\frac{1}{\mathcal{N}_{n}} \sum_{\eta \in\{-1,1\}^{\omega(n), \nu}} \nu \cos (2 \pi\langle\exp (i \theta_{0}+i \underbrace{\sum_{j} \eta_{j} \theta_{j}}_{\theta_{\eta}}), t\rangle)
\end{aligned}
$$

- Consider the Linearised covariance function

$$
s_{n}(t)=\frac{1}{\mathcal{N}_{n}} \sum_{\eta \in\{-1,1\}^{\omega(n)}} \cos \left(2 \pi \theta_{\eta}|t|\right)
$$

Important point: There are $\omega(n)$ degrees of freedom.

If the θ_{η} were iid, by Dirichlet Theorem, the smallest ε-period would be of the order roughly $\varepsilon^{-\mathcal{N}} \gg \exp \left(\ln (n)^{\ln (2) / 2+}\right)$.

Theorem
There is $1 \leqslant\left\|\tilde{\tau}_{n}\right\| \leqslant \ln (n)^{\ln (\ln (\ln (n)))}$ such that

$$
s_{n}\left(\tilde{\tau}_{n}\right) \geqslant 1-\exp \left(-\ln (n)^{\delta}\right)
$$

We get closer to the scale $\ln (n)^{A} \sim \mathcal{N}_{n}^{A^{\prime}}$.
Proof The θ_{η} are linear combinations of $\omega(n)$ many θ_{j}.
We modify The "Dirichlet principle lemma" to show that it is almost equivalent to the situation where $\mathcal{N}=\omega(n)$, with $2^{\omega(n)}=\mathcal{N}_{n}$. Then if $\ln (\varepsilon) \sim-\ln (n)^{\delta}$

$$
\varepsilon^{-\omega(n)}=\varepsilon^{-\ln \left(\mathcal{N}_{n}\right) / \ln (2)}=\exp (-\ln (\varepsilon) \ln (\ln (2) \ln (\ln (n)) / 2 \ln (2)))
$$

Question: Does the ARW replicate at such scales?

Thank you for your attention!

J. Benatar, D. Marinucci, and I. Wigman.

Planck-scale distribution of nodal length of arithmetic random waves.
Journal d'Analyse Mathématique, Vol. 141(2), 2020.
G. Dierickx, I. Nourdin, G. Peccati, and M. Rossi.

Small scale CLTs for the nodal length of monochromatic waves.
Communications in Mathematical Physics, Vol. 397(1), 2023.
A. Sartori.

Spectral almost correlations and phase-transitions for the nodal length of arithmetic random waves.
International Mathematics Research Notices, Vol. 2022(11), 2021.
L. Thomassey and R. Lachièze-Rey

Nodal replication of planar random waves
arXiv https://helios2.mi.parisdescartes.fr/~rlachiez//recherche/nodal.html, 2023
A. N. Todino.

Nodal lengths in shrinking domains for random eigenfunctions on \mathcal{S}^{2}.
Bernoulli, Vol. 26(4):3081-3110, 2020.

