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Helmholtz equation

Eigenmodes: Solutions Fk of

∆F + k2F = 0

∆: Laplacian operator on a manifold (here R2 or T2 )

k: wavenumber

Spatial component of solutions of d’Alembert wave propagation
equation

On R : Fk(x) = a cos(kx) + b sin(kx)

On R2 : for u ∈ R2, ∥u∥ = k

Fu(x) = cos(⟨u, x⟩) or sin(⟨u, x⟩)
+ linear combinations
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Eigenmodes on T2

Fu(x) = cos(⟨u, x⟩) or sin(⟨u, x⟩)

Fu continuous on T2 ⇔ Fu is (1, 1)-periodic ⇔ u ∈ Z2

∆Fu(x) = −4π2(u21 + u22)Fu(x) = −4π2∥u∥2Fu(x)

For n ∈ N, the nth eigenspace is generated by

En = {Fu : ∥u∥2 = n} (Solutions of ∆F + 4π2nF = 0)

In particular, n has to be written as the sum of two squares.

S := {n : En ̸= 0}

.
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A prime number p is the sum of two squares if p = 2 or
p ≡ 1 mod 4, in this case

p =a2p + b2p = (ap + ibp)(ap − ibp)

General case: n ∈ S if

n =pα1
1 ...pαm

m q2β1
1 ....q2βl

l

with pi = 2 or pi ≡ 1, qi ≡ 3. Several solutions zj

n =zj z̄j

zj =
∏
i

(api ± ibpi)
αi × Zn︸︷︷︸

q
β1
1 ....q

βl
l

Cardinality

Nn :=#En =

{
0 if some qi has odd valuation

4
∏m

i=1(1 + αi) otherwise
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Arithmetic Random waves

For most n ∈ S

Nn = ln(n)ln(2)/2+o(1)

(i.e. for a density 1 subsequence S ′ of integers n ⊂ S ),

Let Fn :
√
nT2 → R the Planck scale Arithmetic Random Wave

(ARW):

Fn(x) =
1√
Nn

∑
u:∥u∥2=n

[
au cos

(〈
x,

u√
n

〉)
+ bu sin

(〈
x,

u√
n

〉)]

The covariance function is for x, y ∈
√
nT2

rn(x− y) = Cov(Fn(x), Fn(y)) = E [Fn(x)Fn(y)]

=
1

Nn

∑
u∈Z2:∥u∥2=n

cos

(〈
x− y,

u√
n

〉)
.
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Convergence of the covariance function

rn(x) =
1

Nn

∑
u∈Z2:∥u∥2=n

cos(⟨x, u/
√
n⟩) =

∫
S1
cos(⟨x, u⟩)dµn(u)

where µn :=
1

Nn

∑
u∈Z2:∥u∥2=n

δ u√
n
−−−→
n→∞

µS1 Haar measure on S1

for n ∈ S ′′ ⊂ N of density 1. Pointwise convergence to the 0−Bessel
function

rn(x) → J0(x) =

∫
cos(⟨x, u⟩)dµS1(u)

Remark: J0 is the covariance function of an isotropic stationary field F∞
on R2, the Random planar wave model:

Cov(F∞(x), F∞(y)) = J0(x− y)
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Berry’s conjecture on nodal lines

Expectation: Oravecz, Rudnick and Wigman ’08

LB :=length{F−1
n ({0}) ∩B}, B ⊂

√
nT2

E(LB) =|B| 1

2
√
2

Variance: Krishnapur, Kurlberg, Wigman 2011 : For n ∈ S ′

Var(L√
nT2) ∼

cn
512

n2

N 2
n

where cn ∈ [1/2, 1] “oscillates” as n → ∞

Figure: Nodal lines (L. Thomassey) Figure: Excursion ( Simon Coste)
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Small balls and full correlation

Generalisation by Benatar, Marinucci, Wigman 2020 to small balls:
For α > 0, sn > nα,

Lsn := length{F−1
n ({0}) ∩ B(sn)} Var(Lsn) ∼ cn|B(sn)|2

1

N 2
n

Furthermore, there is full correlation between small balls and
√
nT2 :

sup
s⩾nα

|Corr(Ls,L√
nT2)− 1| → 0.

Based on the Kac-Rice formula and computations of the spectral
quasi-correlations

#{(u1, . . . , ul) ∈ (Z2)l : 0 < |u1 + · · ·+ ul| < ε, ∥ui∥2 = n}

Interpretation in [Todino 2020] (no full correlation on S2)
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Phase transition

There is full correlation at polynomial scales [BMW 20’].
Furthermore

L̃nα :=
Lnα − E(Lnα)√

Var
→ sum of Chi2 variables

Drastic change of behaviour at logarithmic scales [Dierickx,
Nourdin, Peccati and Rossi ’19 ]

L̃ln(n)A →N (0, 1) for A ⩽
1

18
ln(π/2)

There are conjectures about the phase transition, i.e. the minimal
scale ln(n)Ac where full correlation occurs:

[Sartori ’21] Full correlation for sn = ln(n)B with B = 29
6 ln(2)

Hence A < Ac < B
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What happens above the phase transition?

Intuitively, the nodal lines replicate almost identically at distance
ln(n)A (A > Ac).
Say that τ is an ε-almost period of a function F : Rd → Rk if

sup
t

∥F (t+ τ)− F (t)∥ < ε

A function F : Rd → R is almost periodic if for all ε > 0 there is a
relatively denset set of ε-periods.
A sequence of functions (Fn)n⩾1 is said to be (tn)n⩾1-almost
periodic for some τn with 1 ⩽ ∥τn∥ ⩽ tn if

sup
t

∥Fn(t+ τn)− Fn(t)∥ → 0.

The (Planck scale) ARW are trivially (
√
n)-(almost) periodic.

→ Are the ARW (ln(n)A)n⩾1-almost periodic?
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Are the ARW (ln(n)A)n⩾1-almost periodic?

Theorem (Thomassey, L. 23+)

The covariance function is almost periodic at intermediates scales: there
is an almost period τn such that asymptotically for α > 0

ln(n)A ≪ ∥τn∥ ≪ nα

....actually ∥τn∥ = O(exp(ln(n)ln(2)/2+︸ ︷︷ ︸
exp(N 1+

n )

)

and the ARW and its derivatives are (τn)-almost periodic : for β any
multi-index, with high probability

sup
t∈

√
nT2

|∂βFn(t)− ∂βFn(t+ τn)| = o(ln(n)−δ), δ > 0

Remark: Much smaller than the actual exact period
√
n.
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Almost periodicity

Figure: n = 109 : Game of the 7 differences between Fn and F τn
n = Fn(τn + ·)

Proof
1 Show that r(τn) > 1− exp(− ln(n)0+) (Dirichlet principle)
2 Use concentration results about suprema of random Gaussian fields

sup
x∈

√
nT2

|Fn − F τn
n |.
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Consequences for nodal sets

Geometric similarity: for φ continuous with compact support,∫
F−1
n ({0})

φ(t)H1(dt)−
∫
F−1
n ({0})

φ(t+ τn)H1(dt)
L−−−→

n→∞
0

Proof.

First prove the convergence in law in C2(Supp(φ)× Supp(φ))

(Fn, F
τn
n ) → (F∞, F∞)

where F is the planar RPW model on R2, for the topology of C2 uniform
convergence on each compact, and then prove the continuity of the
mapping

F →
∫
F−1(0)

φ(t)H1(dt)
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To do list:

Do we have with high probability

Topology(F−1
n ({0}) ∩B) ∼ Topology(F−1

n ({0}) ∩ (B + τn))?

Replication of phase singularities, i.e. (isolated) complex zeros of

Fn + iF ′
n

where F ′
n is an independent copy of Fn?
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Almost periods of trigonometric polynomials

Lemma

Let N > 1 and

r(x) =
1

N

N∑
k=1

γk(2π⟨uk, x⟩), x ∈ Rd

where the γk are 1-Lipschitz and 2π-periodic, and uk ∈ Rd. Then for
ε > 0, for some 1 ⩽ ∥τ∥ ⩽ ε−N/d,

|r(t+ τ)− r(t)| ⩽ cε (cε-almost periodic at scale τ)
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Application to ARW

d = 2, N = Nn = ln(n)ln(2)/2+o(1)

uk ∈ Z2 such that ∥uk∥2 = n,

τmax
n cannot be logarithmic if εn → 0

εn
−Nn/d = τmax

n ⇔ ln εn =
−d ln(τmax

n )

ln(n)
ln(2)
2

+o(1)
−−−→
n→∞

−∞?

εn = exp(− ln(n)0+) = exp(−N 1+
n /Nn) ⇒ τ ⩽ exp(N 1+

n /d)
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Lower bound

[Dierickx, Nourdin, Peccati and Rossi ’19 ]: rn → J0 uniformly on
B(ln(n)A), and

J0(t) −−→
t→0

0

we necessarily have τn > ln(n)A. Can we do better?

Let N > 1; u1, . . . , uN ∈ S1 random and

RN (x) =
1

N

N∑
i=1

cos(⟨ui, x⟩).

We want to show that for η ∈ (0, 1), for τn ∼ exp(N ), whp

sup
x∈B(τn)

RN (x) < η

⇒ pseudo-periods are at least of scale exp(N ).
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Lower bound

Theorem (Dirichlet bound is almost optimal)

Assumptions:

The system (u1, . . . , uN ) is shift-invariant on S1

The h(ui) satisfy the Hoeffding type inequality for h bounded smooth

P

(∣∣∣∣∣ 1N
N∑
i=1

h(ui)− E(h(u1))

∣∣∣∣∣ > t

)
< exp(−ctγN )

where γ, c > 0 do not depend on h.
Typical example: i.i.d. uniform ui on S1(γ = 2).
Then RN is not almost periodic at scale exp(N 1−) :

sup
∥τ∥∈[1,exp(N 1−)]

RN (τ) <
1

2
.
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Surprising

Hence the proportion of (u1, . . . , uNn) such that RNn does not have a
“Dirichlet” pseudo period τNn ∼ exp(N 1−

n ) goes to 0.

Either the (u1, . . . , uNn) such that ∥ui∥2 = n fall into this small
subset of (S1)Nn (i.e. the toy model of i.i.d. wavevectors ui is not fit)

Or there is full correlation between NA
n and exp(N 1−ε

n ) but no
replication.
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A more elaborate toy model

Recall

n =

k∏
j=1

p
αj

j

l∏
i=1

q2βi
i

where pj = 2 or pj ≡ 1 and qi ≡ 3. Furthermore, [Sartori 21] showed
that for most n ∈ S , ∀j, αj = 1.

Recall that

pj ≡ 1 mod 4 ⇔ pj = a2j + b2j = zjzj with zj = aj + ibj

Hence for most n, the u = a+ ib solutions of |u|2 = n are indexed by
the η = (ηj) ∈ {−1, 1}k via

uη :=
k∏

j=1

(aj + iηjbj)× Zn =
√
n exp(iθ0)

k∏
j=1

exp(iηjθj).
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More elaborate toy model (Cont’d)

The covariance function of the ARW is hence, with k = ω(n)

rn(t) =
1

Nn

∑
η∈{−1,1}ω(n)

ν∈{±1,±i}

ν cos

(
2π

⟨uη, t⟩√
n

)

=
1

Nn

∑
η∈{−1,1}ω(n),ν

ν cos

2π⟨exp(iθ0 + i
∑
j

ηjθj︸ ︷︷ ︸
θη

), t⟩


Consider the Linearised covariance function

sn(t) =
1

Nn

∑
η∈{−1,1}ω(n)

cos(2πθη|t|)

Important point: There are ω(n) degrees of freedom.
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If the θη were iid, by Dirichlet Theorem, the smallest ε-period would be of
the order roughly ε−N ≫ exp(ln(n)ln(2)/2+).

Theorem

There is 1 ⩽ ∥τ̃n∥ ⩽ ln(n)ln(ln(ln(n))) such that

sn(τ̃n) ⩾ 1− exp(− ln(n)δ).

We get closer to the scale ln(n)A ∼ NA′
n .

Proof The θη are linear combinations of ω(n) many θj .
We modify The “Dirichlet principle lemma” to show that it is almost
equivalent to the situation where N = ω(n), with 2ω(n) = Nn. Then if
ln(ε) ∼ − ln(n)δ

ε−ω(n) = ε− ln(Nn)/ ln(2) = exp(− ln(ε) ln(ln(2) ln(ln(n))/2 ln(2)))

Question: Does the ARW replicate at such scales?
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