On the (non)-singularity of Kac-Rice densities

Thomas Letendre (Université Paris-Saclay) joint work with Michele Ancona

Conference on Random Nodal Domains

$$
\text { Rennes - June 6th } 2023
$$

Zeros of Gaussian fields

$f: \mathbb{R} \rightarrow \mathbb{R}$ smooth stationary centered Gaussian field.
Correlation function $\kappa: x \mapsto \mathbb{E}[f(0) f(x)]$ s.t. $\kappa(0)=1$ and $\kappa(x) \xrightarrow[x \rightarrow+\infty]{ } 0$.
For any $x_{1}, \ldots, x_{m} \in \mathbb{R}$ distinct and $k_{1}, \ldots, k_{m} \in \mathbb{N}$,

$$
\left(f\left(x_{1}\right), \ldots, f^{\left(k_{1}\right)}\left(x_{1}\right), \ldots, f\left(x_{m}\right), \ldots, f^{\left(k_{m}\right)}\left(x_{m}\right)\right)
$$

is a non-degenerate Gaussian vector.

Zeros of Gaussian fields

$f: \mathbb{R} \rightarrow \mathbb{R}$ smooth stationary centered Gaussian field.
Correlation function $\kappa: x \mapsto \mathbb{E}[f(0) f(x)]$ s.t. $\kappa(0)=1$ and $\kappa(x) \underset{x \rightarrow+\infty}{ } 0$.
For any $x_{1}, \ldots, x_{m} \in \mathbb{R}$ distinct and $k_{1}, \ldots, k_{m} \in \mathbb{N}$,

$$
\left(f\left(x_{1}\right), \ldots, f^{\left(k_{1}\right)}\left(x_{1}\right), \ldots, f\left(x_{m}\right), \ldots, f^{\left(k_{m}\right)}\left(x_{m}\right)\right)
$$

is a non-degenerate Gaussian vector.

Linear statistics

Almost surely $f^{-1}(0)$ is locally finite and we denote $\mu=\sum_{x \in f^{-1}(0)} \delta_{x}$

$$
\langle\mu, \phi\rangle=\sum_{x \in f^{-1}(0)} \phi(x) .
$$

Kac-Rice formula for factorial moment measures

Let $p \geqslant 1$, we denote $\underline{x}=\left(x_{1}, \ldots, x_{p}\right) \in \mathbb{R}^{p}$ and $\phi^{\otimes p}(\underline{x})=\prod_{i=1}^{p} \phi\left(x_{i}\right)$.
$\mu^{\otimes p}=\sum_{\underline{x} \in f^{-1}(0)^{p}} \delta_{\underline{x}}$ random Radon measure on \mathbb{R}^{p} and

$$
\mathbb{E}\left[\langle\mu, \phi\rangle^{p}\right]=\left\langle\mathbb{E}\left[\mu^{\otimes p}\right], \phi^{\otimes p}\right\rangle
$$

Kac-Rice formula for factorial moment measures

Let $p \geqslant 1$, we denote $\underline{x}=\left(x_{1}, \ldots, x_{p}\right) \in \mathbb{R}^{p}$ and $\phi^{\otimes p}(\underline{x})=\prod_{i=1}^{p} \phi\left(x_{i}\right)$.
$\mu^{\otimes p}=\sum_{\underline{x} \in f^{-1}(0)^{p}} \delta_{\underline{x}}$ random Radon measure on \mathbb{R}^{p} and

$$
\mathbb{E}\left[\langle\mu, \phi\rangle^{\rho}\right]=\left\langle\mathbb{E}\left[\mu^{\otimes p}\right], \phi^{\otimes p}\right\rangle .
$$

Denote $\Delta_{p}=\left\{\underline{x} \in \mathbb{R}^{p} \mid \exists i \neq j\right.$ s.t. $\left.x_{i}=x_{j}\right\}$ and $\mu^{[p]}=\sum_{\underline{x} \in f-1(0)^{p} \backslash \Delta_{\rho}} \delta_{\underline{x}}$.
Moments of linear statistics can be expressed in terms of $\left(\mathbb{E}\left[\mu^{[p]}\right]\right)_{p \geqslant 1}$.
Kac-Rice formula
$\mathbb{E}\left[\mu^{[p]}\right]=\rho_{\rho}(\underline{\underline{x}}) \mathrm{d} \underline{x}, \quad$ where $\quad \rho_{\rho}(\underline{x})=\frac{\mathbb{E}\left[\prod_{i=1}^{p}\left|f^{\prime}\left(x_{i}\right)\right| \mid \forall i, f\left(x_{i}\right)=0\right]}{(2 \pi)^{\frac{p}{2}} \operatorname{det} \operatorname{Var}\left(f\left(x_{1}\right), \ldots, f\left(x_{p}\right)\right)^{\frac{1}{2}}}$.

Computation of central moments of $\langle\mu, \phi\rangle$

General strategy

Step 1 (local integrability): understand the singularity of ρ_{p} along Δ_{p}. Step 2 (clustering): $\rho_{p+q}(\underline{x}, \underline{y})=\rho_{p}(\underline{x}) \rho_{q}(\underline{y})+\varepsilon_{\kappa}\left(\min _{i, j}\left|y_{j}-x_{i}\right|\right)$.
Step 3 (combinatorics): write the p-th central moment as the integral of a polynomial in $\left(\rho_{k}\right)_{1 \leqslant k \leqslant p}$, and compute.

Computation of central moments of $\langle\mu, \phi\rangle$

General strategy

Step 1 (local integrability): understand the singularity of ρ_{p} along Δ_{p}. Step 2 (clustering): $\rho_{p+q}(\underline{x}, \underline{y})=\rho_{p}(\underline{x}) \rho_{q}(\underline{y})+\varepsilon_{\kappa}\left(\min _{i, j}\left|y_{j}-x_{i}\right|\right)$.
Step 3 (combinatorics): write the p-th central moment as the integral of a polynomial in $\left(\rho_{k}\right)_{1 \leqslant k \leqslant p}$, and compute.

Ancona-L., 19: N_{d} number of real roots of a degree d Kostlan polynomial

$$
\mathbb{E}\left[\left(\frac{N_{d}-\mathbb{E}\left[N_{d}\right]}{\operatorname{Var}\left(N_{d}\right)^{\frac{1}{2}}}\right)^{p}\right] \underset{d \rightarrow+\infty}{ } \mathbb{E}\left[\mathcal{N}(0,1)^{p}\right]
$$

Ancona-L., 20: $N_{R}=\operatorname{card}\left(f^{-1}(0) \cap[0, R]\right)=\left\langle\mu, \mathbf{1}_{[0, R]}\right\rangle$ as $R \rightarrow+\infty$, same result if $\kappa^{(k)}(x)=o\left(x^{-4 p}\right)$ for all $0 \leqslant k \leqslant p$.
Gass, 21: Same result for N_{R} if $\kappa^{(k)} \in L^{2}(\mathbb{R})$ for all $0 \leqslant k \leqslant 2 p$.

A conceptual proof that ρ_{p} is continuous

$F(\underline{x})=\left(f\left(x_{1}\right), \ldots, f\left(x_{p}\right)\right)=\operatorname{ev}_{\underline{x}}(f)$ smooth Gaussian field on \mathbb{R}^{p}.
Non-degenerate on $\mathbb{R}^{p} \backslash \Delta_{\rho}$ and

$$
\mu^{[p]}=\sum_{\underline{x} \in F^{-1}(0) \backslash \Delta_{p}} \delta_{\underline{x}} .
$$

Kac-Rice for $\mu^{[p]}$ is Kac-Rice for the expectation applied to $F_{\mid \mathbb{R}^{p} \backslash \Delta_{\rho}}$ and:

$$
\rho_{\rho}(\underline{x})=\frac{\mathbb{E}\left[\left|\operatorname{det}\left(D_{\underline{x}} F\right)\right| \mid F(\underline{x})=0\right]}{(2 \pi)^{\frac{p}{2}} \operatorname{det} \operatorname{Var}(F(\underline{x}))^{\frac{1}{2}}} .
$$

A conceptual proof that ρ_{p} is continuous

$F(\underline{x})=\left(f\left(x_{1}\right), \ldots, f\left(x_{\rho}\right)\right)=\operatorname{ev}_{\underline{x}}(f)$ smooth Gaussian field on \mathbb{R}^{p}.
Non-degenerate on $\mathbb{R}^{p} \backslash \Delta_{p}$ and $\mu^{[p]}=\sum_{\underline{x} \in F^{-1}(0) \backslash \Delta_{p}} \delta_{\underline{x}}$.
Kac-Rice for $\mu^{[p]}$ is Kac-Rice for the expectation applied to $F_{\mid \mathbb{R}^{p} \backslash \Delta_{\rho}}$ and:

$$
\rho_{P}(\underline{x})=\frac{\mathbb{E}\left[\left|\operatorname{det}\left(D_{\underline{x}} F\right)\right| \mid F(\underline{x})=0\right]}{(2 \pi)^{\frac{p}{2}} \operatorname{det} \operatorname{Var}(F(\underline{x}))^{\frac{1}{2}}}=\frac{\mathbb{E}\left[\left|\operatorname{det}\left(D_{\underline{x}} G\right)\right| \mid G(\underline{x})=0\right]}{(2 \pi)^{\frac{p}{2}} \operatorname{det} \operatorname{Var}(G(\underline{x}))^{\frac{1}{2}}} .
$$

Main point

- We can replace F by any smooth Gaussian field G such that

$$
F^{-1}(0) \backslash \Delta_{p} \stackrel{\text { law }}{=} G^{-1}(0) \backslash \Delta_{p}
$$

- If G is non-degenerate on \mathbb{R}^{p} then ρ_{p} extends continuously to \mathbb{R}^{p}.

Hermite interpolation and multi-jets

We can build a natural G that "looks like":

$$
\begin{aligned}
& G(\overbrace{x_{1}, \ldots, x_{1}}^{\left(k_{1}+1\right) \text { times }}, \ldots, \overbrace{x_{m}, \ldots, x_{m}}^{\left(k_{m}+1\right) \text { times }})= \\
& \\
& \qquad \underbrace{\left(f\left(x_{1}\right), \ldots, f^{\left(k_{1}\right)}\left(x_{1}\right), \ldots, f\left(x_{m}\right), \ldots, f^{\left(k_{m}\right)}\left(x_{m}\right)\right)}_{\text {"multi-jet of } f \text { at } \underline{x} "} .
\end{aligned}
$$

Hermite interpolation and multi-jets

We can build a natural G that "looks like":

$$
\begin{aligned}
& G(\overbrace{x_{1}, \ldots, x_{1}}^{\left(k_{1}+1\right) \text { times }}, \ldots, \overbrace{x_{m}, \ldots, x_{m}}^{\left(k_{m}+1\right) \text { times }})= \\
& \\
& \underbrace{\left(f\left(x_{1}\right), \ldots, f^{\left(k_{1}\right)}\left(x_{1}\right), \ldots, f\left(x_{m}\right), \ldots, f^{\left(k_{m}\right)}\left(x_{m}\right)\right)}_{\text {"multi-jet of } f \text { at } \underline{x}^{\prime \prime}} .
\end{aligned}
$$

Hermite polynomial of f at $\underline{x}=\left(x_{1}, \ldots, x_{1}, \ldots, x_{m}, \ldots, x_{m}\right)$

There exists a unique $P \in \mathbb{R}_{p-1}[X]$ s.t. $\left(P^{(k)}\left(x_{i}\right)\right)_{\substack{1 \leqslant i \leqslant m \\ 0 \leqslant k \leqslant k_{i}}}=\left(f^{(k)}\left(x_{i}\right)\right)_{\substack{1 \leqslant i \leqslant m \\ 0 \leqslant k \leqslant k_{i}}}$. Denote this polynomial by $j(f, \underline{x})$.

Hermite interpolation and multi-jets

- $j(\cdot, \underline{x})$ is linear $\rightsquigarrow j(f, \underline{x})$ is Gaussian, and non-degenerate.
- $j(f, \cdot)$ is smooth $\rightsquigarrow j(f, \cdot): \mathbb{R}^{p} \rightarrow \mathbb{R}_{p-1}[X]$ smooth Gaussian field.
- $\forall \underline{x} \notin \Delta_{p}, j(f, \underline{x})=0 \Longleftrightarrow F(\underline{x})=0 \rightsquigarrow$ same zeros as F on $\mathbb{R}^{p} \backslash \Delta_{p}$.

Replacing F by $G=j(f, \cdot)$, we immediatly obtain that $\rho_{p} \in \mathcal{C}^{0}\left(\mathbb{R}^{p}\right)$.

A geometric perspective

$$
\mathcal{C}^{\infty}(\mathbb{R}) \xrightarrow{j(\cdot, \underline{x})}{\underset{\sim}{\text { el }}}_{\substack{\mathbb{R}_{\underline{x}} \underline{\underline{x}} \\ \mathbb{R}^{p}}}[X] \simeq \mathcal{J}_{\underline{x}}
$$

A geometric perspective

$$
\mathcal{C}^{\infty}(\mathbb{R}) \xrightarrow{j(\cdot, \underline{x})} \underbrace{\mathbb{R}_{p-1}[X] \simeq \mathcal{J}_{\underline{x}}}_{\substack{v_{\underline{x}}}} \quad \mathcal{J}_{\underline{\underline{x}}}:=\mathbb{C}^{\infty}(\mathbb{R}) / \operatorname{ker} j(\cdot, \underline{x})
$$

As vector bundles over $\mathbb{R}^{p}, \quad \mathcal{C}^{\infty}(\mathbb{R}) \times \mathbb{R}^{p} \xrightarrow{j} \mathbb{R}_{p-1}[X] \times \mathbb{R}^{p} \simeq \mathcal{J}$. $j(f, \cdot)$ is a section of $\mathcal{J} \rightarrow \mathbb{R}^{p}$.

A geometric perspective

$$
\mathcal{J}_{\underline{x}}:=\mathbb{C}^{\infty}(\mathbb{R}) / \operatorname{ker} j(\cdot, \underline{x})
$$

As vector bundles over $\mathbb{R}^{p}, \mathcal{C}^{\infty}(\mathbb{R}) \times \mathbb{R}^{p} \xrightarrow{j} \mathbb{R}_{p-1}[X] \times \mathbb{R}^{p} \simeq \mathcal{J}$. $j(f, \cdot)$ is a section of $\mathcal{J} \rightarrow \mathbb{R}^{p}$.

Take home message

- Building a multi-jet bundle $\mathcal{J} \rightarrow \mathbb{R}^{p}$ and a smooth bundle map j sending (f, \underline{x}) to its multi-jet is enough to prove $\rho_{p} \in \mathcal{C}^{0}\left(\mathbb{R}^{p}\right)$.
- This is done using polynomial interpolation.

Can we do the same for fields on \mathbb{R}^{n} ?

$f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ nice Gaussian field and $\langle\mu, \phi\rangle=\int_{f^{-1}(0)} \phi \mathrm{d} \mathcal{H}^{n-1}$.

Kac-Rice formula
$\mathbb{E}\left[\mu^{[\rho]}\right]=\rho_{\rho}(\underline{x}) \mathrm{d} \underline{x}, \quad$ where $\quad \rho_{\rho}(\underline{x})=\frac{\mathbb{E}\left[\prod_{i=1}^{p}\left\|D_{x_{i}} f\right\| \mid \forall i, f\left(x_{i}\right)=0\right]}{(2 \pi)^{\frac{p}{2}} \operatorname{det} \operatorname{Var}\left(f\left(x_{1}\right), \ldots, f\left(x_{p}\right)\right)^{\frac{1}{2}}}$.

Can we do the same for fields on \mathbb{R}^{n} ?
$f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ nice Gaussian field and $\langle\mu, \phi\rangle=\int_{f^{-1}(0)} \phi \mathrm{d} \mathcal{H}^{n-1}$.

Kac-Rice formula
$\mathbb{E}\left[\mu^{[p]}\right]=\rho_{p}(\underline{x}) \mathrm{d} \underline{x}, \quad$ where $\quad \rho_{\rho}(\underline{x})=\frac{\mathbb{E}\left[\prod_{i=1}^{p}\left\|D_{x_{i}} f\right\| \mid \forall i, f\left(x_{i}\right)=0\right]}{(2 \pi)^{\frac{p}{2}} \operatorname{det} \operatorname{Var}\left(f\left(x_{1}\right), \ldots, f\left(x_{p}\right)\right)^{\frac{1}{2}}}$.

Bad news

- Polynomial interpolation is ill-posed in \mathbb{R}^{n}.
- $\rho_{2}(x, y) \propto\|y-x\|^{2-n}$ as $y \rightarrow x$. Can hope that ρ_{p} is $L_{\text {loc }}^{1}$ but not \mathcal{C}^{0}.

Yes, we can!

Theorem (Ancona-L.)
For any ambient dimension $n \geqslant 1$ and any $p \geqslant 1$ we have $\rho_{p} \in L_{\text {loc }}^{1}\left(\left(\mathbb{R}^{n}\right)^{p}\right)$.

Corollary

The linear statistics of μ have finite moments of all order.

Yes, we can!

Theorem (Ancona-L.)
For any ambient dimension $n \geqslant 1$ and any $p \geqslant 1$ we have $\rho_{p} \in L_{\text {loc }}^{1}\left(\left(\mathbb{R}^{n}\right)^{p}\right)$.

Corollary

The linear statistics of μ have finite moments of all order.

- Recovers a result by Armentano-Azaïs-Ginsbourger-Leòn.
- Works for $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-d}$, proved independently by Gass-Stecconi.
- Works on manifolds.

Divided differences in \mathbb{R}^{n}

$\sigma_{k}=\left\{\underline{t} \in[0,1]^{k+1} \mid \sum_{i=0}^{k} t_{i}=1\right\}$ and ν_{k} its Lebesgue measure.
Let $\underline{x}=\left(x_{0}, \ldots, x_{k}\right) \in\left(\mathbb{R}^{n}\right)^{k+1}$ we set $\sigma(\underline{x})=\left\{\sum_{i=0}^{k} t_{i} x_{i} \mid \underline{t} \in \sigma_{k}\right\}$ and

$$
\int_{\sigma(\underline{x})} \phi(y) \mathrm{d} \nu(y):=\int_{\sigma_{k}} \phi\left(\sum_{i=0}^{k} t_{i} x_{i}\right) \mathrm{d} \nu_{k}(\underline{t}) .
$$

Divided differences in \mathbb{R}^{n}

$\sigma_{k}=\left\{\underline{t} \in[0,1]^{k+1} \mid \sum_{i=0}^{k} t_{i}=1\right\}$ and ν_{k} its Lebesgue measure.
Let $\underline{x}=\left(x_{0}, \ldots, x_{k}\right) \in\left(\mathbb{R}^{n}\right)^{k+1}$ we set $\sigma(\underline{x})=\left\{\sum_{i=0}^{k} t_{i} x_{i} \mid \underline{t} \in \sigma_{k}\right\}$ and

$$
\int_{\sigma(\underline{x})} \phi(y) \mathrm{d} \nu(y):=\int_{\sigma_{k}} \phi\left(\sum_{i=0}^{k} t_{i} x_{i}\right) \mathrm{d} \nu_{k}(\underline{t}) .
$$

Definition

If $f \in \mathcal{C}^{\infty}\left(\mathbb{R}^{n}\right)$, we define $f\left[x_{0}, \ldots, x_{k}\right]:=\int_{\sigma(\underline{x})} D_{y}^{k} f \mathrm{~d} \nu(y) \in \operatorname{Sym}^{k}\left(\mathbb{R}^{n}\right)$.

- $f\left[x_{0}, \ldots, x_{k}\right]$ linear w.r.t. f;
- It is smooth and symmetric w.r.t. \underline{x};
- If $k=0$, then $f[x]=f(x)$.

Kergin interpolation

Kergin polynomial of $f \in \mathcal{C}^{\infty}\left(\mathbb{R}^{n}\right)$ at $\underline{x} \in\left(\mathbb{R}^{n}\right)^{p}$

There exists a unique $K(f, \underline{x}) \in \mathbb{R}_{p-1}[X]$ s.t $f\left[\left(x_{i}\right)_{i \in I}\right]=K(f, \underline{x})\left[\left(x_{i}\right)_{i \in 1}\right]$ for all non-empty $I \subset\{1, \ldots p\}$.

$$
K(f, \underline{x})=\sum_{i=1}^{p} f\left[x_{1}, \ldots, x_{i}\right]\left(X-x_{1}, \ldots, X-x_{i-1}\right)
$$

In particular, $f\left(x_{i}\right)=K(f, \underline{x})\left(x_{i}\right)$ for any $i \in\{1, \ldots, p\}$.

Kergin interpolation

Kergin polynomial of $f \in \mathcal{C}^{\infty}\left(\mathbb{R}^{n}\right)$ at $\underline{x} \in\left(\mathbb{R}^{n}\right)^{p}$

There exists a unique $K(f, \underline{x}) \in \mathbb{R}_{p-1}[X]$ s.t $f\left(\left(x_{i}\right)_{i \in I}\right]=K(f, \underline{x})\left[\left(x_{i}\right)_{i \in 1}\right]$ for all non-empty $I \subset\{1, \ldots p\}$.

$$
K(f, \underline{x})=\sum_{i=1}^{p} f\left[x_{1}, \ldots, x_{i}\right]\left(X-x_{1}, \ldots, X-x_{i-1}\right)
$$

In particular, $f\left(x_{i}\right)=K(f, \underline{x})\left(x_{i}\right)$ for any $i \in\{1, \ldots, p\}$.

The multi-jet of f at $\underline{x} \notin \Delta_{p}$ is defined by p linear conditions.
$\mathbb{R}_{p-1}[X]$ is too large to be the space of multi-jets at \underline{x}.

Multi-jet bundle over $\left(\mathbb{R}^{n}\right)^{p} \backslash \Delta_{p}$

Let $\underline{x} \notin \Delta_{p}$, then $\mathrm{ev}_{\underline{x}}: \mathbb{R}_{p-1}[X] \rightarrow \mathbb{R}^{p}$ is surjective.
Denote $\mathcal{G}(\underline{x})=\operatorname{ker}_{\underline{x}} \underline{x} \in \operatorname{Gr}_{p}\left(\mathbb{R}_{p-1}[X]\right)$, then

$$
\left(f\left(x_{1}\right), \ldots, f\left(x_{p}\right)\right)=\left(g\left(x_{1}\right), \ldots, g\left(x_{p}\right)\right) \Longleftrightarrow K(f, \underline{x})-K(g, \underline{x}) \in \mathcal{G}(\underline{x}) .
$$

$$
\begin{aligned}
& \mathcal{C}^{\infty}\left(\mathbb{R}^{n}\right) \times\left(\mathbb{R}^{n}\right)^{p} \backslash \Delta_{p} \\
& k \downarrow \\
& \mathbb{R}_{p-1}[X] \times\left(\mathbb{R}^{n}\right)^{p} \backslash \Delta_{p} \\
& \stackrel{\mathrm{ev}}{ }{ }^{\downarrow} \\
& \mathbb{R}^{p} \times\left(\mathbb{R}^{n}\right)^{p} \backslash \Delta_{p}
\end{aligned}
$$

Multi-jet bundle over $\left(\mathbb{R}^{n}\right)^{p} \backslash \Delta_{p}$

Let $\underline{x} \notin \Delta_{p}$, then $\mathrm{ev}_{\underline{\underline{x}}}: \mathbb{R}_{p-1}[X] \rightarrow \mathbb{R}^{p}$ is surjective.
Denote $\mathcal{G}(\underline{x})=\operatorname{kerev}_{\underline{x}} \in \operatorname{Gr}_{p}\left(\mathbb{R}_{p-1}[X]\right)$, then

$$
\left(f\left(x_{1}\right), \ldots, f\left(x_{p}\right)\right)=\left(g\left(x_{1}\right), \ldots, g\left(x_{p}\right)\right) \Longleftrightarrow K(f, \underline{x})-K(g, \underline{x}) \in \mathcal{G}(\underline{x}) .
$$

Definition

$$
\mathcal{J}_{\underline{x}}=\mathbb{R}_{p-1}[X] / \mathcal{G}(\underline{x})
$$

$$
\begin{aligned}
\mathcal{C}^{\infty}\left(\mathbb{R}^{n}\right) & \times\left(\mathbb{R}^{n}\right)^{p} \backslash \Delta_{p} \\
K & \downarrow
\end{aligned}
$$

$$
\operatorname{ker}(\mathrm{ev})=\mathcal{G} \longleftrightarrow \mathbb{R}_{p-1}[X] \times\left(\mathbb{R}^{n}\right)^{p} \backslash \Delta_{p} \longrightarrow \mathcal{J}
$$

$$
\operatorname{ev}_{v}
$$

$$
\mathbb{R}^{p} \times\left(\mathbb{R}^{n}\right)^{p} \backslash \Delta_{p}
$$

Multi-jet bundle over $\left(\mathbb{R}^{n}\right)^{p} \backslash \Delta_{p}$

Let $\underline{x} \notin \Delta_{p}$, then $\mathrm{ev}_{\underline{\underline{x}}}: \mathbb{R}_{p-1}[X] \rightarrow \mathbb{R}^{p}$ is surjective.
Denote $\mathcal{G}(\underline{x})=\operatorname{kerev}_{\underline{x}} \in \operatorname{Gr}_{p}\left(\mathbb{R}_{p-1}[X]\right)$, then

$$
\left(f\left(x_{1}\right), \ldots, f\left(x_{p}\right)\right)=\left(g\left(x_{1}\right), \ldots, g\left(x_{p}\right)\right) \Longleftrightarrow K(f, \underline{x})-K(g, \underline{x}) \in \mathcal{G}(\underline{x}) .
$$

Definition

$\mathcal{J}_{\underline{x}}=\mathbb{R}_{p-1}[X] / \mathcal{G}(\underline{x}) \quad$ and $\quad j(f, \underline{x})=K(f, \underline{x}) \bmod \mathcal{G}(\underline{x})$.

$$
\operatorname{ker(\mathrm {ev})=\mathcal {G}\longrightarrow \mathbb {R}_{p-1}[X]\times (\mathbb {R}^{n})^{p}\backslash \Delta _{p}\longrightarrow \mathcal {J}} \begin{gathered}
\mathcal{C}^{\infty}\left(\mathbb{R}^{n}\right) \times\left(\mathbb{R}^{n}\right)^{p} \backslash \Delta_{p} \\
\mathbb{R}^{\mathrm{ev}} \downarrow \\
\mathbb{R}^{p} \times\left(\mathbb{R}^{n}\right)^{p} \backslash \Delta_{p}
\end{gathered}
$$

Multi-jet bundle over $\left(\mathbb{R}^{n}\right)^{p} \backslash \Delta_{p}$

Let $\underline{x} \notin \Delta_{p}$, then $\mathrm{ev}_{\underline{x}}: \mathbb{R}_{p-1}[X] \rightarrow \mathbb{R}^{p}$ is surjective.
Denote $\mathcal{G}(\underline{x})=\operatorname{kerev}_{\underline{x}} \in \operatorname{Gr}_{p}\left(\mathbb{R}_{p-1}[X]\right)$, then

$$
\left(f\left(x_{1}\right), \ldots, f\left(x_{p}\right)\right)=\left(g\left(x_{1}\right), \ldots, g\left(x_{p}\right)\right) \Longleftrightarrow K(f, \underline{x})-K(g, \underline{x}) \in \mathcal{G}(\underline{x}) .
$$

Definition

$\mathcal{J}_{\underline{x}}=\mathbb{R}_{p-1}[X] / \mathcal{G}(\underline{x}) \quad$ and $\quad j(f, \underline{x})=K(f, \underline{x}) \bmod \mathcal{G}(\underline{x})$.

Does this extend over $\left(\mathbb{R}^{n}\right)^{p}$?

More bad news

Can we extend \mathcal{G} as a smooth map on $\left(\mathbb{R}^{n}\right)^{p}$?
No, we can't!
Take $n=p=2, x=(0,0)$ and $y=R(\cos (\theta), \sin (\theta))$ then

$$
\mathcal{G}(0, y)=\operatorname{Span}\left(X_{1} \sin (\theta)-X_{2} \cos (\theta)\right) \subset \mathbb{R}_{1}\left[X_{1}, X_{2}\right]
$$

and $\mathcal{G}(0, \cdot): \mathbb{R}^{2} \backslash\{0\} \rightarrow \operatorname{Gr}_{2}\left(\mathbb{R}_{1}[X]\right)$ does not extend \mathcal{C}^{0} to \mathbb{R}^{2}.

More bad news

Can we extend \mathcal{G} as a smooth map on $\left(\mathbb{R}^{n}\right)^{p}$?
No, we can't!
Take $n=p=2, x=(0,0)$ and $y=R(\cos (\theta), \sin (\theta))$ then

$$
\mathcal{G}(0, y)=\operatorname{Span}\left(X_{1} \sin (\theta)-X_{2} \cos (\theta)\right) \subset \mathbb{R}_{1}\left[X_{1}, X_{2}\right]
$$

and $\mathcal{G}(0, \cdot): \mathbb{R}^{2} \backslash\{0\} \rightarrow \operatorname{Gr}_{2}\left(\mathbb{R}_{1}[X]\right)$ does not extend \mathcal{C}^{0} to \mathbb{R}^{2}.

But $(R, u) \mapsto \mathcal{G}(0, R u)$ extends \mathcal{C}^{0} from $(0,+\infty) \times \mathbb{S}^{1}$ to $[0,+\infty) \times \mathbb{S}^{1}$.

That is $\mathcal{G}(0, \cdot)$ extends to $\mathrm{Bl}_{0}\left(\mathbb{R}^{2}\right) \simeq\left(\mathbb{R}^{2} \backslash\{0\}\right) \sqcup \mathbb{S}^{1}$.

"Compactification" of configuration spaces

We need to build a smooth manifold $C_{p}\left[\mathbb{R}^{n}\right]$ such that:

- $C_{p}\left[\mathbb{R}^{n}\right]$ contains $\left(\mathbb{R}^{n}\right)^{p} \backslash \Delta_{p}$ as a dense open subset;
- \mathcal{G} extends smoothly to $C_{p}\left[\mathbb{R}^{n}\right]$.

Example

For $p=2$ and $n \geqslant 2, C_{2}\left[\mathbb{R}^{n}\right]=\mathrm{BI}_{\Delta_{2}}\left(\left(\mathbb{R}^{n}\right)^{2}\right)$ works.

"Compactification" of configuration spaces

We need to build a smooth manifold $C_{p}\left[\mathbb{R}^{n}\right]$ such that:

- $C_{p}\left[\mathbb{R}^{n}\right]$ contains $\left(\mathbb{R}^{n}\right)^{p} \backslash \Delta_{p}$ as a dense open subset;
- \mathcal{G} extends smoothly to $C_{P}\left[\mathbb{R}^{n}\right]$.

> Example
> For $p=2$ and $n \geqslant 2, C_{2}\left[\mathbb{R}^{n}\right]=\mathrm{BI}_{\Delta_{2}}\left(\left(\mathbb{R}^{n}\right)^{2}\right)$ works.

Things that we tried and don't work

- Olver multispaces;
- Compactifications by Fulton-MacPherson, Axelrod-Singer, Ulyanov;
- Hilbert schemes;
- Various sequences of blow-ups;
- An explicit construction with nice global coordinates.

Construction of $C_{p}\left[\mathbb{R}^{n}\right]$

Recall that $\mathcal{G}:\left(\mathbb{R}^{n}\right)^{p} \backslash \Delta_{p} \rightarrow \operatorname{Gr}_{p}\left(\mathbb{R}_{p-1}[X]\right)$ is smooth.

$$
\left(\mathbb{R}^{n}\right)^{p} \backslash \Delta_{p} \simeq\left\{(x, \mathcal{G}(\underline{x})) \mid \underline{x} \in\left(\mathbb{R}^{n}\right)^{p} \backslash \Delta_{p}\right\}=: \Sigma
$$

\mathcal{G} extends to $\bar{\Sigma} \subset\left(\mathbb{R}^{n}\right)^{p} \times \operatorname{Gr}_{p}\left(\mathbb{R}_{p-1}[X]\right)$ by projecting onto $\operatorname{Gr}_{p}\left(\mathbb{R}_{p-1}[X]\right)$.

Problem

$\bar{\Sigma}$ is not smooth unless $p=1$ or $n=1$.

Construction of $C_{p}\left[\mathbb{R}^{n}\right]$

Recall that $\mathcal{G}:\left(\mathbb{R}^{n}\right)^{p} \backslash \Delta_{p} \rightarrow \operatorname{Gr}_{p}\left(\mathbb{R}_{p-1}[X]\right)$ is smooth.

$$
\left(\mathbb{R}^{n}\right)^{p} \backslash \Delta_{p} \simeq\left\{(x, \mathcal{G}(\underline{x})) \mid \underline{x} \in\left(\mathbb{R}^{n}\right)^{p} \backslash \Delta_{p}\right\}=: \Sigma
$$

\mathcal{G} extends to $\bar{\Sigma} \subset\left(\mathbb{R}^{n}\right)^{p} \times \operatorname{Gr}_{p}\left(\mathbb{R}_{p-1}[X]\right)$ by projecting onto $\operatorname{Gr}_{p}\left(\mathbb{R}_{p-1}[X]\right)$.

Problem

$\bar{\Sigma}$ is not smooth unless $p=1$ or $n=1$.

Theorem (Hironaka, 1964)
$\bar{\Sigma}$ admits a resolution of singularities, obtained by a sequence of blow-ups.

Any such resolution $C_{p}\left[\mathbb{R}^{n}\right] \rightarrow \bar{\Sigma}$ solves our problem.

The end

Thank you for your attention.

