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Box-crossing estimates for the nodal set

Let f be a smooth centred stationary Gaussian field on R2.

We are interested in box-crossing events for the nodal set:

NodalCross(a, b) = {{f = 0} ‘crosses’ [0, a]× [0, b] from left to right}

+

−

0 a

b

{f = 0} ∩ ([0, a]× [0, b]) contains a path from {0} × [0, b] to {a} × [0, b]
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One can also define analogous events for nodal domains:

DomainCross(a, b)
= {{f ≥ 0} ‘crosses’ [0, a]× [0, b] from left to right}.

+
−

−

By continuity and non-degeneracy, almost surely

NodalCross(a, b) =⇒ DomainCross(a, b)

but not the converse.
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Examples of DomainCross ∩ NodalCrossc .
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We say that f satisfies the nodal box-crossing (NBC) estimates
if, for every aspect ratio ρ > 0,

0 < lim inf
R→∞

NodalCross(R, ρR) ≤ lim sup
R→∞

NodalCross(R, ρR) < 1,

and the domain box-crossing (DBC) estimates if

0 < lim inf
R→∞

DomainCross(R, ρR) ≤ lim sup
R→∞

DomainCross(R, ρR) < 1.

Assuming f is isotropic,

NBC estimates =⇒ DBC estimates

but not the converse.
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Why are these important?

In percolation theory, these are known as Russo-Seymour-Welsh
estimates, and are an essential tool in planar critical percolation.

In particular, they are a step towards proving that the nodal set
possesses a non-degenerate scaling limit.

First, they imply (subsequential) limits for crossing probabilities.

Second, the NBC estimates (but not the DBC estimates) also
prove that a scaling limit, should it exist, must be non-degenerate.

To show rigorously the existence of (sub-sequential) scaling limits
one also needs arm estimates [Aizenman-Burchard ’99]

P[Armk(r ,R)] = P
[

r
R

k arms

]
≤ c(r/R)2+δ

for some δ, k > 0, which are so far unknown for any field.
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Known results on box-crossing estimates

Our understanding of DBC estimates is quite well developed:

Theorem (Köhler-Schindler & Tassion ’23)
Suppose f is isotropic and positively-correlated. Then the DBC
estimates hold.

This built on many previous works which proved DBC estimates
under extra assumptions, e.g. quasi-independence (more later).

The KT result is much more general, applying to black/white
colourings satisfying (i) symmetry under translation, axes
reflection, and in black/white, and (ii) positive associations.
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The (stronger) NBC estimates are less well-understood.

For concreteness consider the Cauchy fields with covariance

K (x) = (1 + |x |2)−α/2 , α > 0.

The case α > 2 is short-range dependent, α < 2 long-range.

The first proof of NBC was [Beffara-Gayet ’17], assuming α > 325.

The motivating example was the Bargmann-Fock field (α ≈ ∞).

Later refinements by [Belyaev-M. ’18] and [Rivera-Vanneuville ’19]
lowered this to α > 4, and then [M.-Vanneuville ’20] to α > 2.

In a different direction, [Belyaev-M.-Wigman ’21] proved
DBC/NBC estimates for the Kostlan ensemble on S2.

These results apply to more general fields, but [MV20] required
some fairly strong assumptions (white noise decomposition).
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DBC vs NBC estimates

Why are NBC estimates harder to prove than DBC estimates?

Heuristically, correlations help DBC estimates, in the sense that
the bounds on DomainCross should improve with slower decay.

Consider for example the degenerate field f (x) ≡ Z , for which
P[DomainCross(a, b)] = 1/2 for all a, b > 0.

Rigorously, [KT ’23] prove that

c1 ≤ DomainCross(R, ρR) ≤ c2

for c1(ρ), c2(ρ) ∈ (0, 1) uniform over all isotropic pos.-cor. fields.

By contrast, correlations weaken NBC estimates, and we cannot
expect uniform bounds (consider again the degenerate field).
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New results

We prove two new results on NBC estimates.

The first generalises the result of [MV20] to essentially all
short-range positively-correlated fields:

Theorem (M. 2023)
Suppose f is isotropic, positively-correlated, K ∈ L1(R2), and
K (R)R2 → 0 as R →∞. Then the NBC estimates hold.

The second concerns Cauchy fields in the long-range case α < 2:

Theorem (M. 2022)
The NBC estimates hold for the Cauchy fields for all α > 0.

This is the first proof of NBC estimates for long-range fields.

It applies to general fields with regularly varying covariance, under
some assumptions (more later).
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Some open questions and conjectures

Question. For the Cauchy fields, what is the behaviour of

lim
R→∞

NodalCross(R, ρR)

as α→ 0? In particular, does it decay to zero?

Our proof only gives a lower bound e−c/α2 , unlikely to be sharp.

Conjecture. The NBC estimates fail if correlations decay
sub-polynomially, i.e. K (R)Rα →∞ for every α > 0.

Conjecture (Harris, Weinrib, Bogomolny-Schmit). The DBC
and NBC estimates hold for the random plane wave.

Conjecture (Harris, Weinrib). The DBC and NBC estimates
hold for short-range fields regardless of positive correlations.

Question. Is there a Harris-type criterion for NBC estimates that
includes the Cauchy fields?
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Sketch of the proof

Recall that, assuming f is isotropic,

NBC estimates =⇒ DBC estimates

but not the converse.

However

DBC estimates + ‘quasi-independence’ =⇒ NBC estimates

where QI means that, for disjoint domains D1,D2,

lim
R→∞

sup
A1∈σ(RD1),A2∈σ(RD2)

Ai crossing event

∣∣∣P[A1 ∩ A2]− P[A1]P[A2]
∣∣∣ = 0.

This path was pioneered in [BG17], and followed in later works.

One can replace ‘crossing event’ with topological event, which
was the setting in which [RV18] proved QI for α > 4.

One can also replace ‘crossing event’ with monotone event,
which was exploited in [MV20] to lower to α > 2.
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There are at least three existing ways to prove QI:

1. Quantitative discretisation [BG ’17, NSV ’07]

2. Interpolation-type covariance formulae [RV ’18, BMR ’20]

3. Finite-range approximation using white-noise truncation [MV ’20]

We give a new approach which works in wider generality:

Proposition

Suppose f is isotropic, K ∈ L1,
∫

K > 0, and K (R)R2 → 0 as
R →∞. Then QI holds for monotone events.

This generality comes at a cost: the quantitative bounds on the
error are typically weaker than with the other approaches.
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QI for short-range fields

We deduce QI from the following sprinkled decoupling inequality
for arbitrary Gaussian vectors:

Proposition (Sprinkled decoupling. M. ’23)
Let X be a Gaussian vector in Rn. Then for all I1, I2 ⊆ {1, . . . , n},
increasing Ai ∈ σ(I1), and ε > 0,

P[X ∈ A1 ∩ A2]− P[X + ε ∈ A1]P[X + ε ∈ A2] ≤ 36‖KI1,I2‖∞
ε2 .

Question. Can the error be improved to c1e−c2ε2/‖KI1,I2‖∞?
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We combine with the following ‘stability’ estimate:

For increasing A ∈ σ(I),

P[X + ε ∈ A]− P[X ∈ A] ≤ ε
√

Cap(I)
2

where Cap(I) = inf{‖h‖2H : h ≥ 1 on I}.

Proof. Choose h ∈ H such that h|I ≥ 1. Then

P[X + ε ∈ A]− P[X ∈ A] ≤ P[X + εh ∈ A]− P[X ∈ A]

≤ dTV (X + εh,X )

≤
√

dKL(X + εh||X )/2

= ε‖h‖H
2 .
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Combining these, we obtain a (generic) mixing estimate∣∣∣P[A1 ∩ A2]− P[A1]P[A2]
∣∣∣ ≤ c

(√
Cap(I1)Cap(I2)‖KI1,I2‖∞

)1/3
.

To deduce QI for short-range fields we use the fact that if K ∈ L1

the capacity has volume-order scaling

Cap(RD) ∼ Vol(D)R2∫
K .

This proves QI assuming K ∈ L1,
∫

K > 0, and K (R)R2 → 0.
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For long-range fields (e.g. Cauchy with α < 2) this argument still
gives interesting conclusions.

The capacity scaling is

Cap(RD) ∼ cDRα.

The same argument then yields a kind of ‘spread-out’ QI:

Let D1 and D2 be unit balls separated by T > 0. Then

sup
A1∈σ(RD1),A2∈σ(RD2)

Ai monotone

∣∣∣P[A1 ∩ A2]− P[A1]P[A2]
∣∣∣ ≤ cT

for some explicit cT → 0 as T →∞.

This is sufficient to deduce NBC estimates for sufficiently large
aspect ratio ρ� 1, but not all aspect ratios.
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NBC for long-range correlated fields
QI is only known for α > 2 and only believed to be true if
α > 3/2, so we need a new approach.

We make the simple observation that QI can be replaced with a
weaker definition of mixing.

We say f satisfies weak ratio mixing if, for every ε > 0 and
disjoint domains D1,D2,

lim inf
R→∞

inf
{
P[A1∩A2] :Ai ∈ σ(RDi ) monotone,P[A1] ≥ ε,P[A2] ≥ ε

}
> 0.

Essentially we replace asymptotic decorrelation with not
asymptotic full correlation.

We have

DBC estimates + ‘weak ratio mixing’ =⇒ NBC estimates.
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Proposition

For all α > 0, the Cauchy fields satisfy weak ratio mixing.

The proof shows that the lim inf term is bounded below by

c1 min{1, e−c2/α2}

for ci depending only on ε and Di .

Question. What is the true behaviour as α→ 0? Does it decay?
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Proof of weak ratio mixing
The proof of QI in [MV ’20] for α > 2 was based on a
decomposition f = fR + gR , where:

1. fR is R-range dependent;

2. ‖gR |RDi‖∞ ≤ cR−α/2√log R with high probability.

This was obtained by truncating the white noise decomposition

f = q ?W .

We then use the fact that Cap(RDi ) � R2, so that the CM space
contains a function satisfying

h|RDi � R−α/2√log R and ‖h‖H � 1.

Then we apply the stability estimate

|P[X + h ∈ A]− P[A]| ≤ ‖h‖H2 .

20 32
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To see the problem adapting to α < 2 recall that Cap(RDi ) � Rα.

Then the CM space only contains functions satisfying

h|RDi � R−α/2√log R and ‖h‖H � 1

which makes the stability estimate useless.

To fix this we need to make two improvements:

1. Obtain a better decomposition with ‖gR |RDi‖∞ ≤ cR−α/2 (i.e.
eliminate the ‘

√
log’ factor).

2. Apply some ‘ratio’ version of the stability estimate.
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Scale-mixture decomposition
To obtain a better decomposition we use a white noise
representation that is filtered-by-scale.

Let q(x , t) ∈ L2
sym(R2 × R+) and W white noise on R2 × R+.

The extra parameter R+ represents scale – essentially we filter
white noise by its contribution on each scale.

Then f = q ?1 W is a stationary Gaussian field on R2 with
covariance kernel q ?1 q.

We say that f = q ?1 W has a scale-mixture decomposition if

q(x , t) =
√

w(t)Q(|x |/t).

Fact. The Cauchy field has a scale-mixture decomposition with
w(t) = cαt−α−3e−1/(4t2) and Q(x) = e−x2 , i.e. it is a scale
mixture of Bargmann-Fock fields.
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We obtain the decomposition f = fR + gR by spatial truncation:

Let q1 be the truncation of q(x , t) at |x | ≤ R, and q2 = q − q1.

Then define

fR = q1 ?1 W and gR = f − fR = q2 ?1 W .

Because the scale of the fluctuations of the contribution from
t ≥ R is ≈ R, we obtain

‖gR |RDi‖∞ ≤ cR−α/2 whp

instead of the naive

‖gR |RDi‖∞ ≤ cR−α/2√log R whp.
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The ‘ratio’ stability estimate
We use the following estimate [Dewan & M. 22]:

P[f + h ∈ A] ≥ P[f ∈ A] exp
(
− ‖h‖2H

2P[f ∈ A] − 1
)
.

which is a variant of a bound in [Deuschel & Stroock ’89].

To apply this we need to find a shift (h, h′) in the CM space of
(fR , gR) satisfying

h|RD1 ≥ 1 , h|RD2 ≤ −1 , |h′|RDi ≤ 1/2 and ‖(h, h′)‖H � Rα.

The CM space of the pair (fR , gR) is{
(q1 ?1 ϕ, q2 ?2 ϕ) : ϕ ∈ L2(R2 × R+)

}
.

The shift we need is obtained from

ϕ(x , t) = λ(1RD1(x)− 1RD2(x))1t∈[aR,bR]

for well chosen λ, a and b.
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The proof of ratio mixing and NBC estimates extends to Gaussian
fields for which there exists a scale-mixture decomposition

f =
√

w(t)Q(|x |/t) ?1 W

satisfying:

1. w(t) is non-negative and regularly varying with index −γ < −3.

This implies the covariance is RV with index −α = 3− γ < 0;

2. Q(x) is non-negative, isotropic, positive at the origin, and decays
exponentially.

Question. Prove ratio mixing and NBC estimates for long-range
fields using only that K is RV with index −α < 0.

Question. Find a more general criterion that doesn’t require RV.
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Proof of sprinkled decoupling

Proposition (Sprinkled decoupling. M. ’23)
Let X be a Gaussian vector in Rn. Then for all I1, I2 ⊆ {1, . . . , n},
increasing Ai ∈ σ(I1), and ε > 0,

P[X ∈ A1 ∩ A2]− P[X + ε ∈ A1]P[X + ε ∈ A2] ≤ 36‖KI1,I2‖∞
ε2 .

We give the proof in the simpler case that KI1,I2 ≥ 0.
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We study the correlation between the thresholds of the increasing
events A1 and A2.

We associate to an increasing event A its threshold

TA(X ) = sup{u ∈ R : {X − u ∈ A} holds}.

It has the key properties that

∂TA(X )
∂Xi

≥ 0 and
∑

i

∂TA(X )
∂Xi

= 1.
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Then by Gaussian interpolation

Cov(TA1 ,TA2) =
∫ ∞

0
e−t ∑

1≤i ,j≤n
K (i , j)E

[∂TA1(X )
∂Xi

∂TA2(X )
∂Xj

]
dt

≤ ‖KI1,I2‖∞
∫ ∞

0
e−t ∑

1≤i ,j≤n
E
[∂TA1(X )

∂Xi

∂TA2(X )
∂Xj

]
dt

= ‖KI1,I2‖∞
∫ ∞

0
e−tE

[∑
i

∂TA1(X )
∂Xi

∑
j

∂TA2(X )
∂Xj

]
dt

= ‖KI1,I2‖∞.
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On the other hand, by Hoeffding’s covariance formula

Cov(TA1 ,TA2)

=
∫ ∞
−∞

∫ ∞
−∞

P[TA1 ≤ u,TA2 ≤ v ]−P[TA1 ≤ u]P[TA2 ≤ v ] dudv

=
∫ ∞
−∞

∫ ∞
−∞

P[X+u ∈ A1,X+v ∈ A2]−P[X+u ∈ A1]P[X+v ∈ A2] dudv

≥
∫ ε

0

∫ ε

0
P[X+u ∈ A1,X+v ∈ A2]−P[X+u ∈ A1]P[X+v ∈ A2] dudv

where the last step used positive associations

P[X + u ∈ A1,X + v ∈ A2]− P[X + u ∈ A1]P[X + v ∈ A2] ≥ 0.
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Putting this together∫ ε

0

∫ ε

0
P[X +u ∈ A1,X +v ∈ A2]−P[X +u ∈ A1]P[X +v ∈ A2] dudv

≤ ‖KI1,I2‖∞

so (again by PA) there exists u, v ∈ [0, ε] such that

P[X + u ∈ A1,X + v ∈ A2]− P[X + u ∈ A1]P[X + v ∈ A2]

≤ ‖KI1,I2‖∞/ε
2.

By monotonicity the LHS is at least

P[X ∈ A1 ∩ A2]− P[X + ε ∈ A1]P[X + ε ∈ A2]

which ends the proof.
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For the general result, the idea is to reduce to the case KI1,I2 ≥ 0
by perturbing X with a small independent Gaussian vector Y .

This works at the cost of increasing the constant from 1 to 36.

Question. Is the inequality true with constant 1 in general?
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Thank you!
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