Box－crossing estimates for the nodal sets of planar Gaussian fields

Stephen Muirhead（Melbourne）

Rennes，June 2023

Box-crossing estimates for the nodal set

Let f be a smooth centred stationary Gaussian field on \mathbb{R}^{2}.

Box-crossing estimates for the nodal set

Let f be a smooth centred stationary Gaussian field on \mathbb{R}^{2}.
We are interested in box-crossing events for the nodal set:

Box-crossing estimates for the nodal set

Let f be a smooth centred stationary Gaussian field on \mathbb{R}^{2}.
We are interested in box-crossing events for the nodal set:
$\operatorname{NodalCross}(a, b)=\{\{f=0\}$ 'crosses' $[0, a] \times[0, b]$ from left to right $\}$

$\{f=0\} \cap([0, a] \times[0, b])$ contains a path from $\{0\} \times[0, b]$ to $\{a\} \times[0, b]$

One can also define analogous events for nodal domains:

One can also define analogous events for nodal domains:

DomainCross (a, b)

$$
=\{\{f \geq 0\} \text { 'crosses' }[0, a] \times[0, b] \text { from left to right }\} .
$$

One can also define analogous events for nodal domains:

$$
\begin{aligned}
& \text { DomainCross }(a, b) \\
& \quad=\{\{f \geq 0\} \text { 'crosses' }[0, a] \times[0, b] \text { from left to right }\} .
\end{aligned}
$$

By continuity and non-degeneracy, almost surely

$$
\operatorname{NodalCross}(a, b) \Longrightarrow \text { DomainCross }(a, b)
$$

but not the converse.

Examples of DomainCross \cap NodalCross ${ }^{\text {c }}$.

We say that f satisfies the nodal box-crossing (NBC) estimates if, for every aspect ratio $\rho>0$,
$0<\liminf _{R \rightarrow \infty} \operatorname{NodalCross}(R, \rho R) \leq \limsup _{R \rightarrow \infty} \operatorname{NodalCross}(R, \rho R)<1$,

We say that f satisfies the nodal box-crossing (NBC) estimates if, for every aspect ratio $\rho>0$,
$0<\liminf _{R \rightarrow \infty} \operatorname{NodalCross}(R, \rho R) \leq \limsup _{R \rightarrow \infty} \operatorname{NodalCross}(R, \rho R)<1$,
and the domain box-crossing (DBC) estimates if
$0<\liminf _{R \rightarrow \infty} \operatorname{DomainCross}(R, \rho R) \leq \limsup _{R \rightarrow \infty} \operatorname{DomainCross}(R, \rho R)<1$.

We say that f satisfies the nodal box-crossing (NBC) estimates if, for every aspect ratio $\rho>0$,
$0<\liminf _{R \rightarrow \infty} \operatorname{NodalCross}(R, \rho R) \leq \limsup _{R \rightarrow \infty} \operatorname{NodalCross}(R, \rho R)<1$,
and the domain box-crossing (DBC) estimates if
$0<\liminf _{R \rightarrow \infty} \operatorname{DomainCross}(R, \rho R) \leq \limsup _{R \rightarrow \infty} \operatorname{DomainCross}(R, \rho R)<1$.

Assuming f is isotropic,

$$
\text { NBC estimates } \Longrightarrow \text { DBC estimates }
$$

but not the converse.

Why are these important?

Why are these important?

In percolation theory, these are known as Russo-Seymour-Welsh estimates, and are an essential tool in planar critical percolation.

Why are these important?

In percolation theory, these are known as Russo-Seymour-Welsh estimates, and are an essential tool in planar critical percolation.

In particular, they are a step towards proving that the nodal set possesses a non-degenerate scaling limit.

Why are these important?

In percolation theory, these are known as Russo-Seymour-Welsh estimates, and are an essential tool in planar critical percolation.

In particular, they are a step towards proving that the nodal set possesses a non-degenerate scaling limit.

First, they imply (subsequential) limits for crossing probabilities.

Why are these important?

In percolation theory, these are known as Russo-Seymour-Welsh estimates, and are an essential tool in planar critical percolation.

In particular, they are a step towards proving that the nodal set possesses a non-degenerate scaling limit.

First, they imply (subsequential) limits for crossing probabilities.
Second, the NBC estimates (but not the DBC estimates) also prove that a scaling limit, should it exist, must be non-degenerate.

Why are these important?

In percolation theory, these are known as Russo-Seymour-Welsh estimates, and are an essential tool in planar critical percolation.

In particular, they are a step towards proving that the nodal set possesses a non-degenerate scaling limit.

First, they imply (subsequential) limits for crossing probabilities.
Second, the NBC estimates (but not the DBC estimates) also prove that a scaling limit, should it exist, must be non-degenerate.

To show rigorously the existence of (sub-sequential) scaling limits one also needs arm estimates [Aizenman-Burchard '99]

$$
\mathbb{P}\left[\operatorname{Arm}_{k}(r, R)\right]=\mathbb{P}\left[\bigodot_{\mathrm{k} \text { arms }}^{\curvearrowright}\right] \leq c(r / R)^{2+\delta}
$$

for some $\delta, k>0$, which are so far unknown for any field.

Known results on box-crossing estimates

Known results on box-crossing estimates

Our understanding of DBC estimates is quite well developed:

Known results on box-crossing estimates

Our understanding of DBC estimates is quite well developed:
Theorem (Köhler-Schindler \& Tassion '23)
Suppose f is isotropic and positively-correlated. Then the DBC estimates hold.

Known results on box-crossing estimates

Our understanding of DBC estimates is quite well developed:
Theorem (Köhler-Schindler \& Tassion '23)
Suppose f is isotropic and positively-correlated. Then the DBC estimates hold.

This built on many previous works which proved DBC estimates under extra assumptions, e.g. quasi-independence (more later).

Known results on box-crossing estimates

Our understanding of DBC estimates is quite well developed:
Theorem (Köhler-Schindler \& Tassion '23)
Suppose f is isotropic and positively-correlated. Then the DBC estimates hold.

This built on many previous works which proved DBC estimates under extra assumptions, e.g. quasi-independence (more later).

The KT result is much more general, applying to black/white colourings satisfying (i) symmetry under translation, axes reflection, and in black/white, and (ii) positive associations.

The (stronger) NBC estimates are less well-understood.

The (stronger) NBC estimates are less well-understood.
For concreteness consider the Cauchy fields with covariance

$$
K(x)=\left(1+|x|^{2}\right)^{-\alpha / 2}, \quad \alpha>0
$$

The case $\alpha>2$ is short-range dependent, $\alpha<2$ long-range.

The (stronger) NBC estimates are less well-understood.
For concreteness consider the Cauchy fields with covariance

$$
K(x)=\left(1+|x|^{2}\right)^{-\alpha / 2}, \quad \alpha>0
$$

The case $\alpha>2$ is short-range dependent, $\alpha<2$ long-range.
The first proof of NBC was [Beffara-Gayet '17], assuming $\alpha>325$.
The motivating example was the Bargmann-Fock field $(\alpha \approx \infty)$.

The (stronger) NBC estimates are less well-understood.
For concreteness consider the Cauchy fields with covariance

$$
K(x)=\left(1+|x|^{2}\right)^{-\alpha / 2}, \quad \alpha>0
$$

The case $\alpha>2$ is short-range dependent, $\alpha<2$ long-range.
The first proof of NBC was [Beffara-Gayet '17], assuming $\alpha>325$.
The motivating example was the Bargmann-Fock field $(\alpha \approx \infty)$.
Later refinements by [Belyaev-M. '18] and [Rivera-Vanneuville '19] lowered this to $\alpha>4$, and then [M.-Vanneuville '20] to $\alpha>2$.

The (stronger) NBC estimates are less well-understood.
For concreteness consider the Cauchy fields with covariance

$$
K(x)=\left(1+|x|^{2}\right)^{-\alpha / 2}, \quad \alpha>0
$$

The case $\alpha>2$ is short-range dependent, $\alpha<2$ long-range.
The first proof of NBC was [Beffara-Gayet '17], assuming $\alpha>325$.
The motivating example was the Bargmann-Fock field $(\alpha \approx \infty)$.
Later refinements by [Belyaev-M. '18] and [Rivera-Vanneuville '19] lowered this to $\alpha>4$, and then [M.-Vanneuville '20] to $\alpha>2$.

In a different direction, [Belyaev-M.-Wigman '21] proved DBC/NBC estimates for the Kostlan ensemble on \mathbb{S}^{2}.

The (stronger) NBC estimates are less well-understood.
For concreteness consider the Cauchy fields with covariance

$$
K(x)=\left(1+|x|^{2}\right)^{-\alpha / 2}, \quad \alpha>0
$$

The case $\alpha>2$ is short-range dependent, $\alpha<2$ long-range.
The first proof of NBC was [Beffara-Gayet '17], assuming $\alpha>325$.
The motivating example was the Bargmann-Fock field $(\alpha \approx \infty)$.
Later refinements by [Belyaev-M. '18] and [Rivera-Vanneuville '19] lowered this to $\alpha>4$, and then [M.-Vanneuville '20] to $\alpha>2$.

In a different direction, [Belyaev-M.-Wigman '21] proved DBC/NBC estimates for the Kostlan ensemble on \mathbb{S}^{2}.

These results apply to more general fields, but [MV20] required some fairly strong assumptions (white noise decomposition).

DBC vs NBC estimates

Why are NBC estimates harder to prove than DBC estimates?

DBC vs NBC estimates

Why are NBC estimates harder to prove than DBC estimates?
Heuristically, correlations help DBC estimates, in the sense that the bounds on DomainCross should improve with slower decay.

DBC vs NBC estimates

Why are NBC estimates harder to prove than DBC estimates?
Heuristically, correlations help DBC estimates, in the sense that the bounds on DomainCross should improve with slower decay.

Consider for example the degenerate field $f(x) \equiv Z$, for which $\mathbb{P}[\operatorname{DomainCross}(a, b)]=1 / 2$ for all $a, b>0$.

DBC vs NBC estimates

Why are NBC estimates harder to prove than DBC estimates?
Heuristically, correlations help DBC estimates, in the sense that the bounds on DomainCross should improve with slower decay.

Consider for example the degenerate field $f(x) \equiv Z$, for which $\mathbb{P}[$ DomainCross $(a, b)]=1 / 2$ for all $a, b>0$.

Rigorously, [KT '23] prove that

$$
c_{1} \leq \operatorname{DomainCross}(R, \rho R) \leq c_{2}
$$

for $c_{1}(\rho), c_{2}(\rho) \in(0,1)$ uniform over all isotropic pos.-cor. fields.

DBC vs NBC estimates

Why are NBC estimates harder to prove than DBC estimates?
Heuristically, correlations help DBC estimates, in the sense that the bounds on DomainCross should improve with slower decay.

Consider for example the degenerate field $f(x) \equiv Z$, for which $\mathbb{P}[$ DomainCross $(a, b)]=1 / 2$ for all $a, b>0$.

Rigorously, [KT '23] prove that

$$
c_{1} \leq \operatorname{DomainCross}(R, \rho R) \leq c_{2}
$$

for $c_{1}(\rho), c_{2}(\rho) \in(0,1)$ uniform over all isotropic pos.-cor. fields.
By contrast, correlations weaken NBC estimates, and we cannot expect uniform bounds (consider again the degenerate field).

New results

New results

We prove two new results on NBC estimates.

New results

We prove two new results on NBC estimates.
The first generalises the result of [MV20] to essentially all short-range positively-correlated fields:

New results

We prove two new results on NBC estimates.
The first generalises the result of [MV20] to essentially all short-range positively-correlated fields:

Theorem (M. 2023)
Suppose f is isotropic, positively-correlated, $K \in L^{1}\left(\mathbb{R}^{2}\right)$, and $K(R) R^{2} \rightarrow 0$ as $R \rightarrow \infty$. Then the NBC estimates hold.

New results

We prove two new results on NBC estimates.
The first generalises the result of [MV20] to essentially all short-range positively-correlated fields:

Theorem (M. 2023)
Suppose f is isotropic, positively-correlated, $K \in L^{1}\left(\mathbb{R}^{2}\right)$, and $K(R) R^{2} \rightarrow 0$ as $R \rightarrow \infty$. Then the NBC estimates hold.

The second concerns Cauchy fields in the long-range case $\alpha<2$:

New results

We prove two new results on NBC estimates.
The first generalises the result of [MV20] to essentially all short-range positively-correlated fields:

Theorem (M. 2023)
Suppose f is isotropic, positively-correlated, $K \in L^{1}\left(\mathbb{R}^{2}\right)$, and $K(R) R^{2} \rightarrow 0$ as $R \rightarrow \infty$. Then the NBC estimates hold.

The second concerns Cauchy fields in the long-range case $\alpha<2$:
Theorem (M. 2022)
The NBC estimates hold for the Cauchy fields for all $\alpha>0$.

New results

We prove two new results on NBC estimates.
The first generalises the result of [MV20] to essentially all short-range positively-correlated fields:

Theorem (M. 2023)
Suppose f is isotropic, positively-correlated, $K \in L^{1}\left(\mathbb{R}^{2}\right)$, and $K(R) R^{2} \rightarrow 0$ as $R \rightarrow \infty$. Then the NBC estimates hold.

The second concerns Cauchy fields in the long-range case $\alpha<2$:
Theorem (M. 2022)
The NBC estimates hold for the Cauchy fields for all $\alpha>0$.
This is the first proof of NBC estimates for long-range fields.

New results

We prove two new results on NBC estimates.
The first generalises the result of [MV20] to essentially all short-range positively-correlated fields:

Theorem (M. 2023)
Suppose f is isotropic, positively-correlated, $K \in L^{1}\left(\mathbb{R}^{2}\right)$, and $K(R) R^{2} \rightarrow 0$ as $R \rightarrow \infty$. Then the NBC estimates hold.

The second concerns Cauchy fields in the long-range case $\alpha<2$:
Theorem (M. 2022)
The NBC estimates hold for the Cauchy fields for all $\alpha>0$.
This is the first proof of NBC estimates for long-range fields.
It applies to general fields with regularly varying covariance, under some assumptions (more later).

Some open questions and conjectures

Some open questions and conjectures

Question. For the Cauchy fields, what is the behaviour of

$$
\lim _{R \rightarrow \infty} \operatorname{NodalCross}(R, \rho R)
$$

as $\alpha \rightarrow 0$? In particular, does it decay to zero?

Some open questions and conjectures

Question. For the Cauchy fields, what is the behaviour of

$$
\lim _{R \rightarrow \infty} \operatorname{NodalCross}(R, \rho R)
$$

as $\alpha \rightarrow 0$? In particular, does it decay to zero?
Our proof only gives a lower bound $e^{-c / \alpha^{2}}$, unlikely to be sharp.

Some open questions and conjectures

Question. For the Cauchy fields, what is the behaviour of

$$
\lim _{R \rightarrow \infty} \operatorname{NodalCross}(R, \rho R)
$$

as $\alpha \rightarrow 0$? In particular, does it decay to zero?
Our proof only gives a lower bound $e^{-c / \alpha^{2}}$, unlikely to be sharp.
Conjecture. The NBC estimates fail if correlations decay sub-polynomially, i.e. $K(R) R^{\alpha} \rightarrow \infty$ for every $\alpha>0$.

Some open questions and conjectures

Question. For the Cauchy fields, what is the behaviour of

$$
\lim _{R \rightarrow \infty} \operatorname{NodalCross}(R, \rho R)
$$

as $\alpha \rightarrow 0$? In particular, does it decay to zero?
Our proof only gives a lower bound $e^{-c / \alpha^{2}}$, unlikely to be sharp.
Conjecture. The NBC estimates fail if correlations decay sub-polynomially, i.e. $K(R) R^{\alpha} \rightarrow \infty$ for every $\alpha>0$.

Conjecture (Harris, Weinrib, Bogomolny-Schmit). The DBC and NBC estimates hold for the random plane wave.

Some open questions and conjectures

Question. For the Cauchy fields, what is the behaviour of

$$
\lim _{R \rightarrow \infty} \operatorname{NodaICross}(R, \rho R)
$$

as $\alpha \rightarrow 0$? In particular, does it decay to zero?
Our proof only gives a lower bound $e^{-c / \alpha^{2}}$, unlikely to be sharp.
Conjecture. The NBC estimates fail if correlations decay sub-polynomially, i.e. $K(R) R^{\alpha} \rightarrow \infty$ for every $\alpha>0$.

Conjecture (Harris, Weinrib, Bogomolny-Schmit). The DBC and NBC estimates hold for the random plane wave.

Conjecture (Harris, Weinrib). The DBC and NBC estimates hold for short-range fields regardless of positive correlations.

Some open questions and conjectures

Question. For the Cauchy fields, what is the behaviour of

$$
\lim _{R \rightarrow \infty} \operatorname{NodaICross}(R, \rho R)
$$

as $\alpha \rightarrow 0$? In particular, does it decay to zero?
Our proof only gives a lower bound $e^{-c / \alpha^{2}}$, unlikely to be sharp.
Conjecture. The NBC estimates fail if correlations decay sub-polynomially, i.e. $K(R) R^{\alpha} \rightarrow \infty$ for every $\alpha>0$.

Conjecture (Harris, Weinrib, Bogomolny-Schmit). The DBC and NBC estimates hold for the random plane wave.

Conjecture (Harris, Weinrib). The DBC and NBC estimates hold for short-range fields regardless of positive correlations.

Question. Is there a Harris-type criterion for NBC estimates that includes the Cauchy fields?

Sketch of the proof

Sketch of the proof

Recall that, assuming f is isotropic, NBC estimates \Longrightarrow DBC estimates
but not the converse.

Sketch of the proof

Recall that, assuming f is isotropic,
NBC estimates \Longrightarrow DBC estimates
but not the converse.
However
DBC estimates + 'quasi-independence' \Longrightarrow NBC estimates where QI means that, for disjoint domains D_{1}, D_{2},

$$
\lim _{R \rightarrow \infty} \sup _{\substack{A_{1} \in \sigma\left(R D_{1}\right), A_{2} \in \sigma\left(R D_{2}\right) \\ A_{i} \text { crossing event }}}\left|\mathbb{P}\left[A_{1} \cap A_{2}\right]-\mathbb{P}\left[A_{1}\right] \mathbb{P}\left[A_{2}\right]\right|=0 .
$$

Sketch of the proof

Recall that, assuming f is isotropic,

NBC estimates \Longrightarrow DBC estimates

but not the converse.
However
DBC estimates + 'quasi-independence' \Longrightarrow NBC estimates where QI means that, for disjoint domains D_{1}, D_{2},

$$
\lim _{R \rightarrow \infty} \sup _{\substack{A_{1} \in \sigma\left(R D_{1}\right), A_{2} \in \sigma\left(R D_{2}\right) \\ A_{i} \text { crossing event }}}\left|\mathbb{P}\left[A_{1} \cap A_{2}\right]-\mathbb{P}\left[A_{1}\right] \mathbb{P}\left[A_{2}\right]\right|=0 .
$$

This path was pioneered in [BG17], and followed in later works.

Sketch of the proof

Recall that, assuming f is isotropic,

NBC estimates \Longrightarrow DBC estimates

but not the converse.
However
DBC estimates + 'quasi-independence' \Longrightarrow NBC estimates where QI means that, for disjoint domains D_{1}, D_{2},

$$
\lim _{R \rightarrow \infty} \sup _{\substack{A_{1} \in \sigma\left(R D_{1}\right), A_{2} \in \sigma\left(R D_{2}\right) \\ A_{i} \text { crossing event }}}\left|\mathbb{P}\left[A_{1} \cap A_{2}\right]-\mathbb{P}\left[A_{1}\right] \mathbb{P}\left[A_{2}\right]\right|=0
$$

This path was pioneered in [BG17], and followed in later works.
One can replace 'crossing event' with topological event, which was the setting in which [RV18] proved QI for $\alpha>4$.

Sketch of the proof

Recall that, assuming f is isotropic,

$$
\text { NBC estimates } \Longrightarrow \text { DBC estimates }
$$

but not the converse.
However
DBC estimates + 'quasi-independence' \Longrightarrow NBC estimates where QI means that, for disjoint domains D_{1}, D_{2},

$$
\lim _{R \rightarrow \infty} \sup _{\substack{A_{1} \in \sigma\left(R D_{1}\right), A_{2} \in \sigma\left(R D_{2}\right) \\ A_{i} \text { crossing event }}}\left|\mathbb{P}\left[A_{1} \cap A_{2}\right]-\mathbb{P}\left[A_{1}\right] \mathbb{P}\left[A_{2}\right]\right|=0 .
$$

This path was pioneered in [BG17], and followed in later works.
One can replace 'crossing event' with topological event, which was the setting in which [RV18] proved QI for $\alpha>4$.

One can also replace 'crossing event' with monotone event, which was exploited in [MV20] to lower to $\alpha>2$.

There are at least three existing ways to prove QI:

There are at least three existing ways to prove QI:

1. Quantitative discretisation [BG '17, NSV '07]

There are at least three existing ways to prove QI:

1. Quantitative discretisation [BG '17, NSV '07]
2. Interpolation-type covariance formulae [RV '18, BMR '20]

There are at least three existing ways to prove QI:

1. Quantitative discretisation [BG '17, NSV '07]
2. Interpolation-type covariance formulae [RV '18, BMR '20]
3. Finite-range approximation using white-noise truncation [MV '20]

There are at least three existing ways to prove QI:

1. Quantitative discretisation [BG '17, NSV '07]
2. Interpolation-type covariance formulae [RV '18, BMR '20]
3. Finite-range approximation using white-noise truncation [MV '20]

We give a new approach which works in wider generality:

There are at least three existing ways to prove QI:

1. Quantitative discretisation [BG '17, NSV '07]
2. Interpolation-type covariance formulae [RV '18, BMR '20]
3. Finite-range approximation using white-noise truncation [MV '20]

We give a new approach which works in wider generality:

Proposition

Suppose f is isotropic, $K \in L^{1}, \int K>0$, and $K(R) R^{2} \rightarrow 0$ as $R \rightarrow \infty$. Then QI holds for monotone events.

There are at least three existing ways to prove QI:

1. Quantitative discretisation [BG '17, NSV '07]
2. Interpolation-type covariance formulae [RV '18, BMR '20]
3. Finite-range approximation using white-noise truncation [MV '20]

We give a new approach which works in wider generality:

Proposition

Suppose f is isotropic, $K \in L^{1}, \int K>0$, and $K(R) R^{2} \rightarrow 0$ as
$R \rightarrow \infty$. Then QI holds for monotone events.
This generality comes at a cost: the quantitative bounds on the error are typically weaker than with the other approaches.

QI for short-range fields

QI for short-range fields

We deduce QI from the following sprinkled decoupling inequality for arbitrary Gaussian vectors:

QI for short-range fields

We deduce QI from the following sprinkled decoupling inequality for arbitrary Gaussian vectors:

Proposition (Sprinkled decoupling. M. '23)
Let X be a Gaussian vector in \mathbb{R}^{n}. Then for all $I_{1}, I_{2} \subseteq\{1, \ldots, n\}$, increasing $A_{i} \in \sigma\left(I_{1}\right)$, and $\varepsilon>0$,

$$
\mathbb{P}\left[X \in A_{1} \cap A_{2}\right]-\mathbb{P}\left[X+\varepsilon \in A_{1}\right] \mathbb{P}\left[X+\varepsilon \in A_{2}\right] \leq \frac{36\left\|K_{l_{1}, l_{2}}\right\|_{\infty}}{\varepsilon^{2}}
$$

QI for short-range fields

We deduce QI from the following sprinkled decoupling inequality for arbitrary Gaussian vectors:

Proposition (Sprinkled decoupling. M. '23)
Let X be a Gaussian vector in \mathbb{R}^{n}. Then for all $I_{1}, I_{2} \subseteq\{1, \ldots, n\}$, increasing $A_{i} \in \sigma\left(I_{1}\right)$, and $\varepsilon>0$,

$$
\mathbb{P}\left[X \in A_{1} \cap A_{2}\right]-\mathbb{P}\left[X+\varepsilon \in A_{1}\right] \mathbb{P}\left[X+\varepsilon \in A_{2}\right] \leq \frac{36\left\|K_{1_{1}, l_{2}}\right\|_{\infty}}{\varepsilon^{2}}
$$

Question. Can the error be improved to $c_{1} e^{-c_{2} \varepsilon^{2} / \| K_{1}, l_{2}} \|_{\infty}$?

We combine with the following 'stability' estimate:

We combine with the following 'stability' estimate:
For increasing $A \in \sigma(I)$,

$$
\mathbb{P}[X+\varepsilon \in A]-\mathbb{P}[X \in A] \leq \frac{\varepsilon \sqrt{\operatorname{Cap}(I)}}{2}
$$

where $\operatorname{Cap}(I)=\inf \left\{\|h\|_{H}^{2}: h \geq 1\right.$ on $\left.I\right\}$.

We combine with the following 'stability' estimate:
For increasing $A \in \sigma(I)$,

$$
\mathbb{P}[X+\varepsilon \in A]-\mathbb{P}[X \in A] \leq \frac{\varepsilon \sqrt{\operatorname{Cap}(I)}}{2}
$$

where $\operatorname{Cap}(I)=\inf \left\{\|h\|_{H}^{2}: h \geq 1\right.$ on $\left.I\right\}$.

Proof.

We combine with the following 'stability' estimate:
For increasing $A \in \sigma(I)$,

$$
\mathbb{P}[X+\varepsilon \in A]-\mathbb{P}[X \in A] \leq \frac{\varepsilon \sqrt{\operatorname{Cap}(I)}}{2}
$$

where $\operatorname{Cap}(I)=\inf \left\{\|h\|_{H}^{2}: h \geq 1\right.$ on $\left.I\right\}$.
Proof. Choose $h \in H$ such that $\left.h\right|_{I} \geq 1$. Then

We combine with the following 'stability' estimate:
For increasing $A \in \sigma(I)$,

$$
\mathbb{P}[X+\varepsilon \in A]-\mathbb{P}[X \in A] \leq \frac{\varepsilon \sqrt{\operatorname{Cap}(I)}}{2}
$$

where $\operatorname{Cap}(I)=\inf \left\{\|h\|_{H}^{2}: h \geq 1\right.$ on $\left.I\right\}$.
Proof. Choose $h \in H$ such that $\left.h\right|_{I} \geq 1$. Then

$$
\mathbb{P}[X+\varepsilon \in A]-\mathbb{P}[X \in A] \leq \mathbb{P}[X+\varepsilon h \in A]-\mathbb{P}[X \in A]
$$

We combine with the following 'stability' estimate:
For increasing $A \in \sigma(I)$,

$$
\mathbb{P}[X+\varepsilon \in A]-\mathbb{P}[X \in A] \leq \frac{\varepsilon \sqrt{\operatorname{Cap}(I)}}{2}
$$

where $\operatorname{Cap}(I)=\inf \left\{\|h\|_{H}^{2}: h \geq 1\right.$ on $\left.I\right\}$.
Proof. Choose $h \in H$ such that $\left.h\right|_{I} \geq 1$. Then

$$
\begin{aligned}
\mathbb{P}[X+\varepsilon \in A]-\mathbb{P}[X \in A] & \leq \mathbb{P}[X+\varepsilon h \in A]-\mathbb{P}[X \in A] \\
& \leq d_{T V}(X+\varepsilon h, X)
\end{aligned}
$$

We combine with the following 'stability' estimate:
For increasing $A \in \sigma(I)$,

$$
\mathbb{P}[X+\varepsilon \in A]-\mathbb{P}[X \in A] \leq \frac{\varepsilon \sqrt{\operatorname{Cap}(I)}}{2}
$$

where $\operatorname{Cap}(I)=\inf \left\{\|h\|_{H}^{2}: h \geq 1\right.$ on $\left.I\right\}$.
Proof. Choose $h \in H$ such that $\left.h\right|_{I} \geq 1$. Then

$$
\begin{aligned}
\mathbb{P}[X+\varepsilon \in A]-\mathbb{P}[X \in A] & \leq \mathbb{P}[X+\varepsilon h \in A]-\mathbb{P}[X \in A] \\
& \leq d_{T V}(X+\varepsilon h, X) \\
& \leq \sqrt{d_{K L}(X+\varepsilon h \| X) / 2}
\end{aligned}
$$

We combine with the following 'stability' estimate:
For increasing $A \in \sigma(I)$,

$$
\mathbb{P}[X+\varepsilon \in A]-\mathbb{P}[X \in A] \leq \frac{\varepsilon \sqrt{\operatorname{Cap}(I)}}{2}
$$

where $\operatorname{Cap}(I)=\inf \left\{\|h\|_{H}^{2}: h \geq 1\right.$ on $\left.I\right\}$.
Proof. Choose $h \in H$ such that $\left.h\right|_{I} \geq 1$. Then

$$
\begin{aligned}
\mathbb{P}[X+\varepsilon \in A]-\mathbb{P}[X \in A] & \leq \mathbb{P}[X+\varepsilon h \in A]-\mathbb{P}[X \in A] \\
& \leq d_{T V}(X+\varepsilon h, X) \\
& \leq \sqrt{d_{K L}(X+\varepsilon h \| X) / 2} \\
& =\frac{\varepsilon\|h\|_{H}}{2} .
\end{aligned}
$$

Combining these, we obtain a (generic) mixing estimate

$$
\left|\mathbb{P}\left[A_{1} \cap A_{2}\right]-\mathbb{P}\left[A_{1}\right] \mathbb{P}\left[A_{2}\right]\right| \leq c\left(\sqrt{\operatorname{Cap}\left(I_{1}\right) \operatorname{Cap}\left(I_{2}\right)}\left\|K_{l_{1}, I_{2}}\right\|_{\infty}\right)^{1 / 3}
$$

Combining these, we obtain a (generic) mixing estimate

$$
\left|\mathbb{P}\left[A_{1} \cap A_{2}\right]-\mathbb{P}\left[A_{1}\right] \mathbb{P}\left[A_{2}\right]\right| \leq c\left(\sqrt{\operatorname{Cap}\left(I_{1}\right) \operatorname{Cap}\left(I_{2}\right)}\left\|K_{l_{1}, I_{2}}\right\|_{\infty}\right)^{1 / 3}
$$

To deduce QI for short-range fields we use the fact that if $K \in L^{1}$ the capacity has volume-order scaling

$$
\operatorname{Cap}(R D) \sim \frac{\operatorname{Vol}(D) R^{2}}{\int K}
$$

Combining these, we obtain a (generic) mixing estimate

$$
\left|\mathbb{P}\left[A_{1} \cap A_{2}\right]-\mathbb{P}\left[A_{1}\right] \mathbb{P}\left[A_{2}\right]\right| \leq c\left(\sqrt{\operatorname{Cap}\left(I_{1}\right) \operatorname{Cap}\left(I_{2}\right)}\left\|K_{l_{1}, I_{2}}\right\|_{\infty}\right)^{1 / 3}
$$

To deduce QI for short-range fields we use the fact that if $K \in L^{1}$ the capacity has volume-order scaling

$$
\operatorname{Cap}(R D) \sim \frac{\operatorname{Vol}(D) R^{2}}{\int K}
$$

This proves QI assuming $K \in L^{1}, \int K>0$, and $K(R) R^{2} \rightarrow 0$.

For long-range fields (e.g. Cauchy with $\alpha<2$) this argument still gives interesting conclusions.

For long-range fields (e.g. Cauchy with $\alpha<2$) this argument still gives interesting conclusions.

The capacity scaling is

$$
\operatorname{Cap}(R D) \sim c_{D} R^{\alpha}
$$

For long-range fields (e.g. Cauchy with $\alpha<2$) this argument still gives interesting conclusions.

The capacity scaling is

$$
\operatorname{Cap}(R D) \sim c_{D} R^{\alpha}
$$

The same argument then yields a kind of 'spread-out' QI:

For long-range fields (e.g. Cauchy with $\alpha<2$) this argument still gives interesting conclusions.

The capacity scaling is

$$
\operatorname{Cap}(R D) \sim c_{D} R^{\alpha}
$$

The same argument then yields a kind of 'spread-out' QI:
Let D_{1} and D_{2} be unit balls separated by $T>0$. Then

$$
\sup _{\substack{A_{1} \in \sigma\left(R D_{1}\right), A_{2} \in \sigma\left(R D_{2}\right) \\ A_{i} \text { monotone }}}\left|\mathbb{P}\left[A_{1} \cap A_{2}\right]-\mathbb{P}\left[A_{1}\right] \mathbb{P}\left[A_{2}\right]\right| \leq c_{T}
$$

for some explicit $c_{T} \rightarrow 0$ as $T \rightarrow \infty$.

For long-range fields (e.g. Cauchy with $\alpha<2$) this argument still gives interesting conclusions.

The capacity scaling is

$$
\operatorname{Cap}(R D) \sim c_{D} R^{\alpha} .
$$

The same argument then yields a kind of 'spread-out' QI:
Let D_{1} and D_{2} be unit balls separated by $T>0$. Then

$$
\sup _{\substack{A_{1} \in \sigma\left(R D_{1}\right), A_{2} \in \sigma\left(R D_{2}\right) \\ A_{i} \text { monotone }}}\left|\mathbb{P}\left[A_{1} \cap A_{2}\right]-\mathbb{P}\left[A_{1}\right] \mathbb{P}\left[A_{2}\right]\right| \leq c_{T}
$$

for some explicit $c_{T} \rightarrow 0$ as $T \rightarrow \infty$.
This is sufficient to deduce NBC estimates for sufficiently large aspect ratio $\rho \gg 1$, but not all aspect ratios.

NBC for long-range correlated fields

QI is only known for $\alpha>2$ and only believed to be true if $\alpha>3 / 2$, so we need a new approach.

NBC for long-range correlated fields

QI is only known for $\alpha>2$ and only believed to be true if $\alpha>3 / 2$, so we need a new approach.

We make the simple observation that QI can be replaced with a weaker definition of mixing.

NBC for long-range correlated fields

QI is only known for $\alpha>2$ and only believed to be true if $\alpha>3 / 2$, so we need a new approach.

We make the simple observation that QI can be replaced with a weaker definition of mixing.

We say f satisfies weak ratio mixing if, for every $\varepsilon>0$ and disjoint domains D_{1}, D_{2},
$\liminf _{R \rightarrow \infty} \inf \left\{\mathbb{P}\left[A_{1} \cap A_{2}\right]: A_{i} \in \sigma\left(R D_{i}\right)\right.$ monotone, $\left.\mathbb{P}\left[A_{1}\right] \geq \varepsilon, \mathbb{P}\left[A_{2}\right] \geq \varepsilon\right\}>0$.

NBC for long-range correlated fields

QI is only known for $\alpha>2$ and only believed to be true if $\alpha>3 / 2$, so we need a new approach.

We make the simple observation that QI can be replaced with a weaker definition of mixing.

We say f satisfies weak ratio mixing if, for every $\varepsilon>0$ and disjoint domains D_{1}, D_{2},
$\liminf _{R \rightarrow \infty} \inf \left\{\mathbb{P}\left[A_{1} \cap A_{2}\right]: A_{i} \in \sigma\left(R D_{i}\right)\right.$ monotone, $\left.\mathbb{P}\left[A_{1}\right] \geq \varepsilon, \mathbb{P}\left[A_{2}\right] \geq \varepsilon\right\}>0$.
Essentially we replace asymptotic decorrelation with not asymptotic full correlation.

NBC for long-range correlated fields

QI is only known for $\alpha>2$ and only believed to be true if $\alpha>3 / 2$, so we need a new approach.

We make the simple observation that QI can be replaced with a weaker definition of mixing.

We say f satisfies weak ratio mixing if, for every $\varepsilon>0$ and disjoint domains D_{1}, D_{2},
$\liminf _{R \rightarrow \infty} \inf \left\{\mathbb{P}\left[A_{1} \cap A_{2}\right]: A_{i} \in \sigma\left(R D_{i}\right)\right.$ monotone, $\left.\mathbb{P}\left[A_{1}\right] \geq \varepsilon, \mathbb{P}\left[A_{2}\right] \geq \varepsilon\right\}>0$.
Essentially we replace asymptotic decorrelation with not asymptotic full correlation.

We have
DBC estimates + 'weak ratio mixing' \Longrightarrow NBC estimates.

Proposition

For all $\alpha>0$, the Cauchy fields satisfy weak ratio mixing.

Proposition
For all $\alpha>0$, the Cauchy fields satisfy weak ratio mixing.
The proof shows that the lim inf term is bounded below by

$$
c_{1} \min \left\{1, e^{-c_{2} / \alpha^{2}}\right\}
$$

for c_{i} depending only on ε and D_{i}.

Proposition

For all $\alpha>0$, the Cauchy fields satisfy weak ratio mixing.
The proof shows that the lim inf term is bounded below by

$$
c_{1} \min \left\{1, e^{-c_{2} / \alpha^{2}}\right\}
$$

for c_{i} depending only on ε and D_{i}.
Question. What is the true behaviour as $\alpha \rightarrow 0$? Does it decay?

Proof of weak ratio mixing

The proof of QI in [MV '20] for $\alpha>2$ was based on a decomposition $f=f_{R}+g_{R}$, where:

Proof of weak ratio mixing

The proof of QI in [MV '20] for $\alpha>2$ was based on a decomposition $f=f_{R}+g_{R}$, where:

1. f_{R} is R-range dependent;

Proof of weak ratio mixing

The proof of QI in [MV '20] for $\alpha>2$ was based on a decomposition $f=f_{R}+g_{R}$, where:

1. f_{R} is R-range dependent;
2. $\left\|\left.g_{R}\right|_{R D_{i}}\right\|_{\infty} \leq c R^{-\alpha / 2} \sqrt{\log R}$ with high probability.

Proof of weak ratio mixing

The proof of QI in [MV '20] for $\alpha>2$ was based on a decomposition $f=f_{R}+g_{R}$, where:

1. f_{R} is R-range dependent;
2. $\left\|\left.g_{R}\right|_{R D_{i}}\right\|_{\infty} \leq c R^{-\alpha / 2} \sqrt{\log R}$ with high probability.

This was obtained by truncating the white noise decomposition

$$
f=q \star W
$$

Proof of weak ratio mixing

The proof of QI in [MV '20] for $\alpha>2$ was based on a decomposition $f=f_{R}+g_{R}$, where:

1. f_{R} is R-range dependent;
2. $\left\|\left.g_{R}\right|_{R D_{i}}\right\|_{\infty} \leq c R^{-\alpha / 2} \sqrt{\log R}$ with high probability.

This was obtained by truncating the white noise decomposition

$$
f=q \star W .
$$

We then use the fact that $\operatorname{Cap}\left(R D_{i}\right) \asymp R^{2}$, so that the CM space contains a function satisfying

$$
\left.h\right|_{R D_{i}} \gg R^{-\alpha / 2} \sqrt{\log R} \quad \text { and } \quad\|h\|_{H} \ll 1
$$

Proof of weak ratio mixing

The proof of QI in [MV '20] for $\alpha>2$ was based on a decomposition $f=f_{R}+g_{R}$, where:

1. f_{R} is R-range dependent;
2. $\left\|\left.g_{R}\right|_{R D_{i}}\right\|_{\infty} \leq c R^{-\alpha / 2} \sqrt{\log R}$ with high probability.

This was obtained by truncating the white noise decomposition

$$
f=q \star W .
$$

We then use the fact that $\operatorname{Cap}\left(R D_{i}\right) \asymp R^{2}$, so that the CM space contains a function satisfying

$$
\left.h\right|_{R D_{i}} \gg R^{-\alpha / 2} \sqrt{\log R} \quad \text { and } \quad\|h\|_{H} \ll 1
$$

Then we apply the stability estimate

$$
|\mathbb{P}[X+h \in A]-\mathbb{P}[A]| \leq \frac{\|h\|_{H}}{2}
$$

To see the problem adapting to $\alpha<2$ recall that $\operatorname{Cap}\left(R D_{i}\right) \asymp R^{\alpha}$.

To see the problem adapting to $\alpha<2$ recall that $\operatorname{Cap}\left(R D_{i}\right) \asymp R^{\alpha}$. Then the CM space only contains functions satisfying

$$
\left.h\right|_{R D_{i}} \gg R^{-\alpha / 2} \sqrt{\log R} \quad \text { and } \quad\|h\|_{H} \gg 1
$$

which makes the stability estimate useless.

To see the problem adapting to $\alpha<2$ recall that $\operatorname{Cap}\left(R D_{i}\right) \asymp R^{\alpha}$.
Then the CM space only contains functions satisfying

$$
\left.h\right|_{R D_{i}} \gg R^{-\alpha / 2} \sqrt{\log R} \quad \text { and } \quad\|h\|_{H} \gg 1
$$

which makes the stability estimate useless.
To fix this we need to make two improvements:

To see the problem adapting to $\alpha<2$ recall that $\operatorname{Cap}\left(R D_{i}\right) \asymp R^{\alpha}$.
Then the CM space only contains functions satisfying

$$
\left.h\right|_{R D_{i}} \gg R^{-\alpha / 2} \sqrt{\log R} \quad \text { and } \quad\|h\|_{H} \gg 1
$$

which makes the stability estimate useless.
To fix this we need to make two improvements:

1. Obtain a better decomposition with $\left\|\left.g_{R}\right|_{R D_{i}}\right\|_{\infty} \leq c R^{-\alpha / 2}$ (i.e. eliminate the ' $\sqrt{\log }$ ' factor).

To see the problem adapting to $\alpha<2$ recall that $\operatorname{Cap}\left(R D_{i}\right) \asymp R^{\alpha}$.
Then the CM space only contains functions satisfying

$$
\left.h\right|_{R D_{i}} \gg R^{-\alpha / 2} \sqrt{\log R} \quad \text { and } \quad\|h\|_{H} \gg 1
$$

which makes the stability estimate useless.
To fix this we need to make two improvements:

1. Obtain a better decomposition with $\left\|\left.g_{R}\right|_{R D_{i}}\right\|_{\infty} \leq c R^{-\alpha / 2}$ (i.e. eliminate the ' $\sqrt{\log }$ ' factor).
2. Apply some 'ratio' version of the stability estimate.

Scale-mixture decomposition

To obtain a better decomposition we use a white noise representation that is filtered-by-scale.

Scale-mixture decomposition

To obtain a better decomposition we use a white noise representation that is filtered-by-scale.

Let $q(x, t) \in L_{\text {sym }}^{2}\left(\mathbb{R}^{2} \times \mathbb{R}^{+}\right)$and W white noise on $\mathbb{R}^{2} \times \mathbb{R}^{+}$.

Scale-mixture decomposition

To obtain a better decomposition we use a white noise representation that is filtered-by-scale.

Let $q(x, t) \in L_{\text {sym }}^{2}\left(\mathbb{R}^{2} \times \mathbb{R}^{+}\right)$and W white noise on $\mathbb{R}^{2} \times \mathbb{R}^{+}$.
The extra parameter \mathbb{R}^{+}represents scale - essentially we filter white noise by its contribution on each scale.

Scale-mixture decomposition

To obtain a better decomposition we use a white noise representation that is filtered-by-scale.

Let $q(x, t) \in L_{\text {sym }}^{2}\left(\mathbb{R}^{2} \times \mathbb{R}^{+}\right)$and W white noise on $\mathbb{R}^{2} \times \mathbb{R}^{+}$.
The extra parameter \mathbb{R}^{+}represents scale - essentially we filter white noise by its contribution on each scale.

Then $f=q \star_{1} W$ is a stationary Gaussian field on \mathbb{R}^{2} with covariance kernel $q \star_{1} q$.

Scale-mixture decomposition

To obtain a better decomposition we use a white noise representation that is filtered-by-scale.

Let $q(x, t) \in L_{\text {sym }}^{2}\left(\mathbb{R}^{2} \times \mathbb{R}^{+}\right)$and W white noise on $\mathbb{R}^{2} \times \mathbb{R}^{+}$.
The extra parameter \mathbb{R}^{+}represents scale - essentially we filter white noise by its contribution on each scale.

Then $f=q \star_{1} W$ is a stationary Gaussian field on \mathbb{R}^{2} with covariance kernel $q \star_{1} q$.

We say that $f=q \star_{1} W$ has a scale-mixture decomposition if

$$
q(x, t)=\sqrt{w(t)} Q(|x| / t)
$$

Scale-mixture decomposition

To obtain a better decomposition we use a white noise representation that is filtered-by-scale.

Let $q(x, t) \in L_{\text {sym }}^{2}\left(\mathbb{R}^{2} \times \mathbb{R}^{+}\right)$and W white noise on $\mathbb{R}^{2} \times \mathbb{R}^{+}$.
The extra parameter \mathbb{R}^{+}represents scale - essentially we filter white noise by its contribution on each scale.

Then $f=q \star_{1} W$ is a stationary Gaussian field on \mathbb{R}^{2} with covariance kernel $q \star_{1} q$.

We say that $f=q \star_{1} W$ has a scale-mixture decomposition if

$$
q(x, t)=\sqrt{w(t)} Q(|x| / t)
$$

Fact. The Cauchy field has a scale-mixture decomposition with $w(t)=c_{\alpha} t^{-\alpha-3} e^{-1 /\left(4 t^{2}\right)}$ and $Q(x)=e^{-x^{2}}$, i.e. it is a scale mixture of Bargmann-Fock fields.

We obtain the decomposition $f=f_{R}+g_{R}$ by spatial truncation:

We obtain the decomposition $f=f_{R}+g_{R}$ by spatial truncation:
Let q_{1} be the truncation of $q(x, t)$ at $|x| \leq R$, and $q_{2}=q-q_{1}$.

We obtain the decomposition $f=f_{R}+g_{R}$ by spatial truncation:
Let q_{1} be the truncation of $q(x, t)$ at $|x| \leq R$, and $q_{2}=q-q_{1}$.
Then define

$$
f_{R}=q_{1} \star_{1} W \quad \text { and } \quad g_{R}=f-f_{R}=q_{2} \star_{1} W .
$$

We obtain the decomposition $f=f_{R}+g_{R}$ by spatial truncation:
Let q_{1} be the truncation of $q(x, t)$ at $|x| \leq R$, and $q_{2}=q-q_{1}$.
Then define

$$
f_{R}=q_{1} \star_{1} W \quad \text { and } \quad g_{R}=f-f_{R}=q_{2} \star_{1} W .
$$

Because the scale of the fluctuations of the contribution from $t \geq R$ is $\approx R$, we obtain

$$
\left\|\left.g_{R}\right|_{R D_{i}}\right\|_{\infty} \leq c R^{-\alpha / 2} \quad \text { whp }
$$

instead of the naive

$$
\left\|\left.g_{R}\right|_{R D_{i}}\right\|_{\infty} \leq c R^{-\alpha / 2} \sqrt{\log R} \quad \text { whp. }
$$

The 'ratio' stability estimate

We use the following estimate [Dewan \& M. 22]:

The 'ratio' stability estimate

We use the following estimate [Dewan \& M. 22]:

$$
\mathbb{P}[f+h \in A] \geq \mathbb{P}[f \in A] \exp \left(-\frac{\|h\|_{H}^{2}}{2 \mathbb{P}[f \in A]}-1\right)
$$

which is a variant of a bound in [Deuschel \& Stroock '89].

The 'ratio' stability estimate

We use the following estimate [Dewan \& M. 22]:

$$
\mathbb{P}[f+h \in A] \geq \mathbb{P}[f \in A] \exp \left(-\frac{\|h\|_{H}^{2}}{2 \mathbb{P}[f \in A]}-1\right)
$$

which is a variant of a bound in [Deuschel \& Stroock '89].
To apply this we need to find a shift (h, h^{\prime}) in the CM space of $\left(f_{R}, g_{R}\right)$ satisfying
$\left.h\right|_{R D_{1}} \geq 1,\left.\quad h\right|_{R D_{2}} \leq-1, \quad\left|h^{\prime}\right|_{R D_{i}} \leq 1 / 2 \quad$ and $\quad\left\|\left(h, h^{\prime}\right)\right\|_{H} \asymp R^{\alpha}$.

The 'ratio' stability estimate

We use the following estimate [Dewan \& M. 22]:

$$
\mathbb{P}[f+h \in A] \geq \mathbb{P}[f \in A] \exp \left(-\frac{\|h\|_{H}^{2}}{2 \mathbb{P}[f \in A]}-1\right)
$$

which is a variant of a bound in [Deuschel \& Stroock '89].
To apply this we need to find a shift (h, h^{\prime}) in the CM space of $\left(f_{R}, g_{R}\right)$ satisfying
$\left.h\right|_{R D_{1}} \geq 1,\left.\quad h\right|_{R D_{2}} \leq-1, \quad\left|h^{\prime}\right|_{R D_{i}} \leq 1 / 2 \quad$ and $\quad\left\|\left(h, h^{\prime}\right)\right\|_{H} \asymp R^{\alpha}$.
The CM space of the pair $\left(f_{R}, g_{R}\right)$ is

$$
\left\{\left(q_{1} \star_{1} \varphi, q_{2} \star_{2} \varphi\right): \varphi \in L^{2}\left(\mathbb{R}^{2} \times \mathbb{R}^{+}\right)\right\}
$$

The 'ratio' stability estimate

We use the following estimate [Dewan \& M. 22]:

$$
\mathbb{P}[f+h \in A] \geq \mathbb{P}[f \in A] \exp \left(-\frac{\|h\|_{H}^{2}}{2 \mathbb{P}[f \in A]}-1\right)
$$

which is a variant of a bound in [Deuschel \& Stroock '89].
To apply this we need to find a shift (h, h^{\prime}) in the CM space of (f_{R}, g_{R}) satisfying
$\left.h\right|_{R D_{1}} \geq 1,\left.\quad h\right|_{R D_{2}} \leq-1, \quad\left|h^{\prime}\right|_{R D_{i}} \leq 1 / 2 \quad$ and $\quad\left\|\left(h, h^{\prime}\right)\right\|_{H} \asymp R^{\alpha}$.
The CM space of the pair $\left(f_{R}, g_{R}\right)$ is

$$
\left\{\left(q_{1} \star_{1} \varphi, q_{2} \star_{2} \varphi\right): \varphi \in L^{2}\left(\mathbb{R}^{2} \times \mathbb{R}^{+}\right)\right\}
$$

The shift we need is obtained from

$$
\varphi(x, t)=\lambda\left(\mathbb{1}_{R D_{1}}(x)-\mathbb{1}_{R D_{2}}(x)\right) \mathbb{1}_{t \in[a R, b R]}
$$

for well chosen λ, a and b.

The proof of ratio mixing and NBC estimates extends to Gaussian fields for which there exists a scale-mixture decomposition

$$
f=\sqrt{w(t)} Q(|x| / t) \star_{1} W
$$

satisfying:

The proof of ratio mixing and NBC estimates extends to Gaussian fields for which there exists a scale-mixture decomposition

$$
f=\sqrt{w(t)} Q(|x| / t) \star_{1} W
$$

satisfying:

1. $w(t)$ is non-negative and regularly varying with index $-\gamma<-3$.

This implies the covariance is RV with index $-\alpha=3-\gamma<0$;

The proof of ratio mixing and NBC estimates extends to Gaussian fields for which there exists a scale-mixture decomposition

$$
f=\sqrt{w(t)} Q(|x| / t) \star_{1} W
$$

satisfying:

1. $w(t)$ is non-negative and regularly varying with index $-\gamma<-3$.

This implies the covariance is RV with index $-\alpha=3-\gamma<0$;
2. $Q(x)$ is non-negative, isotropic, positive at the origin, and decays exponentially.

The proof of ratio mixing and NBC estimates extends to Gaussian fields for which there exists a scale-mixture decomposition

$$
f=\sqrt{w(t)} Q(|x| / t) \star_{1} W
$$

satisfying:

1. $w(t)$ is non-negative and regularly varying with index $-\gamma<-3$.

This implies the covariance is RV with index $-\alpha=3-\gamma<0$;
2. $Q(x)$ is non-negative, isotropic, positive at the origin, and decays exponentially.

Question. Prove ratio mixing and NBC estimates for long-range fields using only that K is RV with index $-\alpha<0$.

The proof of ratio mixing and NBC estimates extends to Gaussian fields for which there exists a scale-mixture decomposition

$$
f=\sqrt{w(t)} Q(|x| / t) \star_{1} W
$$

satisfying:

1. $w(t)$ is non-negative and regularly varying with index $-\gamma<-3$. This implies the covariance is RV with index $-\alpha=3-\gamma<0$;
2. $Q(x)$ is non-negative, isotropic, positive at the origin, and decays exponentially.

Question. Prove ratio mixing and NBC estimates for long-range fields using only that K is RV with index $-\alpha<0$.

Question. Find a more general criterion that doesn't require RV.

Proof of sprinkled decoupling

Proof of sprinkled decoupling

Proposition (Sprinkled decoupling. M. '23)

Let X be a Gaussian vector in \mathbb{R}^{n}. Then for all $I_{1}, I_{2} \subseteq\{1, \ldots, n\}$, increasing $A_{i} \in \sigma\left(I_{1}\right)$, and $\varepsilon>0$,

$$
\mathbb{P}\left[X \in A_{1} \cap A_{2}\right]-\mathbb{P}\left[X+\varepsilon \in A_{1}\right] \mathbb{P}\left[X+\varepsilon \in A_{2}\right] \leq \frac{36\left\|K_{l_{1}, l_{2}}\right\|_{\infty}}{\varepsilon^{2}}
$$

Proof of sprinkled decoupling

Proposition (Sprinkled decoupling. M. '23)

Let X be a Gaussian vector in \mathbb{R}^{n}. Then for all $I_{1}, I_{2} \subseteq\{1, \ldots, n\}$, increasing $A_{i} \in \sigma\left(I_{1}\right)$, and $\varepsilon>0$,

$$
\mathbb{P}\left[X \in A_{1} \cap A_{2}\right]-\mathbb{P}\left[X+\varepsilon \in A_{1}\right] \mathbb{P}\left[X+\varepsilon \in A_{2}\right] \leq \frac{36\left\|K_{l_{1}, l_{2}}\right\|_{\infty}}{\varepsilon^{2}}
$$

We give the proof in the simpler case that $K_{l_{1}, l_{2}} \geq 0$.

We study the correlation between the thresholds of the increasing events A_{1} and A_{2}.

We study the correlation between the thresholds of the increasing events A_{1} and A_{2}.

We associate to an increasing event A its threshold

$$
T_{A}(X)=\sup \{u \in \mathbb{R}:\{X-u \in A\} \text { holds }\}
$$

We study the correlation between the thresholds of the increasing events A_{1} and A_{2}.

We associate to an increasing event A its threshold

$$
T_{A}(X)=\sup \{u \in \mathbb{R}:\{X-u \in A\} \text { holds }\} .
$$

It has the key properties that

$$
\frac{\partial T_{A}(X)}{\partial X_{i}} \geq 0 \quad \text { and } \quad \sum_{i} \frac{\partial T_{A}(X)}{\partial X_{i}}=1
$$

Then by Gaussian interpolation

$$
\operatorname{Cov}\left(T_{A_{1}}, T_{A_{2}}\right)=\int_{0}^{\infty} e^{-t} \sum_{1 \leq i, j \leq n} K(i, j) \mathbb{E}\left[\frac{\partial T_{A_{1}}(X)}{\partial X_{i}} \frac{\partial T_{A_{2}}(X)}{\partial X_{j}}\right] d t
$$

Then by Gaussian interpolation

$$
\begin{aligned}
& \operatorname{Cov}\left(T_{A_{1}}, T_{A_{2}}\right)=\int_{0}^{\infty} e^{-t} \sum_{1 \leq i, j \leq n} K(i, j) \mathbb{E}\left[\frac{\partial T_{A_{1}}(X)}{\partial X_{i}} \frac{\partial T_{A_{2}}(X)}{\partial X_{j}}\right] d t \\
& \quad \leq\left\|K_{l_{1}, l_{2}}\right\|_{\infty} \int_{0}^{\infty} e^{-t} \sum_{1 \leq i, j \leq n} \mathbb{E}\left[\frac{\partial T_{A_{1}}(X)}{\partial X_{i}} \frac{\partial T_{A_{2}}(X)}{\partial X_{j}}\right] d t
\end{aligned}
$$

Then by Gaussian interpolation

$$
\begin{aligned}
& \operatorname{Cov}\left(T_{A_{1}}, T_{A_{2}}\right)=\int_{0}^{\infty} e^{-t} \sum_{1 \leq i, j \leq n} K(i, j) \mathbb{E}\left[\frac{\partial T_{A_{1}}(X)}{\partial X_{i}} \frac{\partial T_{A_{2}}(X)}{\partial X_{j}}\right] d t \\
& \quad \leq\left\|K_{l_{1}, l_{2}}\right\|_{\infty} \int_{0}^{\infty} e^{-t} \sum_{1 \leq i, j \leq n} \mathbb{E}\left[\frac{\partial T_{A_{1}}(X)}{\partial X_{i}} \frac{\partial T_{A_{2}}(X)}{\partial X_{j}}\right] d t \\
& \quad=\left\|K_{I_{1}, l_{2}}\right\|_{\infty} \int_{0}^{\infty} e^{-t} \mathbb{E}\left[\sum_{i} \frac{\partial T_{A_{1}}(X)}{\partial X_{i}} \sum_{j} \frac{\partial T_{A_{2}}(X)}{\partial X_{j}}\right] d t
\end{aligned}
$$

Then by Gaussian interpolation

$$
\begin{aligned}
& \operatorname{Cov}\left(T_{A_{1}}, T_{A_{2}}\right)=\int_{0}^{\infty} e^{-t} \sum_{1 \leq i, j \leq n} K(i, j) \mathbb{E}\left[\frac{\partial T_{A_{1}}(X)}{\partial X_{i}} \frac{\partial T_{A_{2}}(X)}{\partial X_{j}}\right] d t \\
& \quad \leq\left\|K_{l_{1}, l_{2}}\right\|_{\infty} \int_{0}^{\infty} e^{-t} \sum_{1 \leq i, j \leq n} \mathbb{E}\left[\frac{\partial T_{A_{1}}(X)}{\partial X_{i}} \frac{\partial T_{A_{2}}(X)}{\partial X_{j}}\right] d t \\
& \quad=\left\|K_{l_{1}, l_{2}}\right\|_{\infty} \int_{0}^{\infty} e^{-t} \mathbb{E}\left[\sum_{i} \frac{\partial T_{A_{1}}(X)}{\partial X_{i}} \sum_{j} \frac{\partial T_{A_{2}}(X)}{\partial X_{j}}\right] d t \\
& \quad=\left\|K_{l_{1}, l_{2}}\right\|_{\infty} .
\end{aligned}
$$

On the other hand, by Hoeffding's covariance formula

$$
\begin{aligned}
& \operatorname{Cov}\left(T_{A_{1}}, T_{A_{2}}\right) \\
= & \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mathbb{P}\left[T_{A_{1}} \leq u, T_{A_{2}} \leq v\right]-\mathbb{P}\left[T_{A_{1}} \leq u\right] \mathbb{P}\left[T_{A_{2}} \leq v\right] d u d v
\end{aligned}
$$

On the other hand, by Hoeffding's covariance formula

$$
\begin{aligned}
& \operatorname{Cov}\left(T_{A_{1}}, T_{A_{2}}\right) \\
= & \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mathbb{P}\left[T_{A_{1}} \leq u, T_{A_{2}} \leq v\right]-\mathbb{P}\left[T_{A_{1}} \leq u\right] \mathbb{P}\left[T_{A_{2}} \leq v\right] d u d v \\
= & \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mathbb{P}\left[X+u \in A_{1}, X+v \in A_{2}\right]-\mathbb{P}\left[X+u \in A_{1}\right] \mathbb{P}\left[X+v \in A_{2}\right] d u d v
\end{aligned}
$$

On the other hand, by Hoeffding's covariance formula

$$
\begin{aligned}
& \operatorname{Cov}\left(T_{A_{1}}, T_{A_{2}}\right) \\
= & \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mathbb{P}\left[T_{A_{1}} \leq u, T_{A_{2}} \leq v\right]-\mathbb{P}\left[T_{A_{1}} \leq u\right] \mathbb{P}\left[T_{A_{2}} \leq v\right] d u d v \\
= & \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mathbb{P}\left[X+u \in A_{1}, X+v \in A_{2}\right]-\mathbb{P}\left[X+u \in A_{1}\right] \mathbb{P}\left[X+v \in A_{2}\right] d u d v \\
\geq & \int_{0}^{\varepsilon} \int_{0}^{\varepsilon} \mathbb{P}\left[X+u \in A_{1}, X+v \in A_{2}\right]-\mathbb{P}\left[X+u \in A_{1}\right] \mathbb{P}\left[X+v \in A_{2}\right] d u d v
\end{aligned}
$$

where the last step used positive associations

$$
\mathbb{P}\left[X+u \in A_{1}, X+v \in A_{2}\right]-\mathbb{P}\left[X+u \in A_{1}\right] \mathbb{P}\left[X+v \in A_{2}\right] \geq 0
$$

Putting this together

$$
\begin{aligned}
& \int_{0}^{\varepsilon} \int_{0}^{\varepsilon} \mathbb{P}\left[X+u \in A_{1}, X+v \in A_{2}\right]-\mathbb{P}\left[X+u \in A_{1}\right] \mathbb{P}\left[X+v \in A_{2}\right] d u d v \\
& \quad \leq\left\|K_{l_{1}, l_{2}}\right\|_{\infty}
\end{aligned}
$$

Putting this together

$$
\begin{aligned}
& \int_{0}^{\varepsilon} \int_{0}^{\varepsilon} \mathbb{P}\left[X+u \in A_{1}, X+v \in A_{2}\right]-\mathbb{P}\left[X+u \in A_{1}\right] \mathbb{P}\left[X+v \in A_{2}\right] d u d v \\
& \quad \leq\left\|K_{l_{1}, l_{2}}\right\|_{\infty}
\end{aligned}
$$

so (again by PA) there exists $u, v \in[0, \varepsilon]$ such that

$$
\begin{aligned}
& \mathbb{P}\left[X+u \in A_{1}, X+v \in A_{2}\right]-\mathbb{P}\left[X+u \in A_{1}\right] \mathbb{P}\left[X+v \in A_{2}\right] \\
& \quad \leq\left\|K_{l_{1}, l_{2}}\right\|_{\infty} / \varepsilon^{2} .
\end{aligned}
$$

Putting this together

$$
\begin{aligned}
& \int_{0}^{\varepsilon} \int_{0}^{\varepsilon} \mathbb{P}\left[X+u \in A_{1}, X+v \in A_{2}\right]-\mathbb{P}\left[X+u \in A_{1}\right] \mathbb{P}\left[X+v \in A_{2}\right] d u d v \\
& \quad \leq\left\|K_{l_{1}, l_{2}}\right\|_{\infty}
\end{aligned}
$$

so (again by PA) there exists $u, v \in[0, \varepsilon]$ such that

$$
\begin{aligned}
& \mathbb{P}\left[X+u \in A_{1}, X+v \in A_{2}\right]-\mathbb{P}\left[X+u \in A_{1}\right] \mathbb{P}\left[X+v \in A_{2}\right] \\
& \quad \leq\left\|K_{l_{1}, l_{2}}\right\|_{\infty} / \varepsilon^{2} .
\end{aligned}
$$

By monotonicity the LHS is at least

$$
\mathbb{P}\left[X \in A_{1} \cap A_{2}\right]-\mathbb{P}\left[X+\varepsilon \in A_{1}\right] \mathbb{P}\left[X+\varepsilon \in A_{2}\right]
$$

which ends the proof.

For the general result, the idea is to reduce to the case $K_{l_{1}, l_{2}} \geq 0$ by perturbing X with a small independent Gaussian vector Y.

For the general result, the idea is to reduce to the case $K_{l_{1}, l_{2}} \geq 0$ by perturbing X with a small independent Gaussian vector Y.

This works at the cost of increasing the constant from 1 to 36 .

For the general result, the idea is to reduce to the case $K_{l_{1}, l_{2}} \geq 0$ by perturbing X with a small independent Gaussian vector Y.

This works at the cost of increasing the constant from 1 to 36 .
Question. Is the inequality true with constant 1 in general?

Thank you!

S. Muirhead, 'Percolation of strongly correlated Gaussian fields II: Sharpness of the phase transition', preprint, 2022
S. Muirhead, 'A sprinkled decoupling inequality for Gaussian vectors and applications’, preprint, 2023

