Box-crossing estimates for the nodal sets of planar Gaussian fields

Stephen Muirhead (Melbourne) Rennes, June 2023

Box-crossing estimates for the nodal set

Let f be a smooth centred stationary Gaussian field on \mathbb{R}^2 .

Box-crossing estimates for the nodal set

Let f be a smooth centred stationary Gaussian field on \mathbb{R}^2 . We are interested in **box-crossing** events for the nodal set:

Box-crossing estimates for the nodal set

Let f be a smooth centred stationary Gaussian field on \mathbb{R}^2 .

We are interested in **box-crossing** events for the nodal set:

NodalCross $(a, b) = \{\{f = 0\} \text{ 'crosses' } [0, a] \times [0, b] \text{ from left to right}\}$

 $\{f = 0\} \cap ([0, a] \times [0, b])$ contains a path from $\{0\} \times [0, b]$ to $\{a\} \times [0, b]$

One can also define analogous events for nodal domains:

One can also define analogous events for nodal domains:

 $\begin{aligned} \mathsf{DomainCross}(a,b) \\ &= \{\{f \geq 0\} \text{ `crosses' } [0,a] \times [0,b] \text{ from left to right} \}. \end{aligned}$

One can also define analogous events for nodal domains:

 $\begin{aligned} \mathsf{DomainCross}(a,b) \\ &= \{\{f \geq 0\} \text{ `crosses' } [0,a] \times [0,b] \text{ from left to right} \}. \end{aligned}$

By continuity and non-degeneracy, almost surely

 $NodalCross(a, b) \implies DomainCross(a, b)$

but not the converse.

Examples of DomainCross \cap NodalCross^{*c*}.

We say that f satisfies the **nodal box-crossing (NBC) estimates** if, for every aspect ratio $\rho > 0$,

 $0 < \liminf_{R \to \infty} \operatorname{NodalCross}(R, \rho R) \leq \limsup_{R \to \infty} \operatorname{NodalCross}(R, \rho R) < 1,$

We say that f satisfies the **nodal box-crossing (NBC) estimates** if, for every aspect ratio $\rho > 0$,

 $0 < \liminf_{R \to \infty} \mathsf{NodalCross}(R, \rho R) \le \limsup_{R \to \infty} \mathsf{NodalCross}(R, \rho R) < 1,$

and the domain box-crossing (DBC) estimates if

 $0 < \liminf_{R \to \infty} \text{DomainCross}(R, \rho R) \leq \limsup_{R \to \infty} \text{DomainCross}(R, \rho R) < 1.$

We say that f satisfies the **nodal box-crossing (NBC) estimates** if, for every aspect ratio $\rho > 0$,

 $0 < \liminf_{R \to \infty} \mathsf{NodalCross}(R, \rho R) \leq \limsup_{R \to \infty} \mathsf{NodalCross}(R, \rho R) < 1,$

and the domain box-crossing (DBC) estimates if

 $0 < \liminf_{R \to \infty} \text{DomainCross}(R, \rho R) \le \limsup_{R \to \infty} \text{DomainCross}(R, \rho R) < 1.$

Assuming f is isotropic,

NBC estimates \implies DBC estimates

but not the converse.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

In percolation theory, these are known as **Russo-Seymour-Welsh** estimates, and are an essential tool in planar critical percolation.

In percolation theory, these are known as **Russo-Seymour-Welsh** estimates, and are an essential tool in planar critical percolation.

In particular, they are a step towards proving that the nodal set possesses a non-degenerate scaling limit.

In percolation theory, these are known as **Russo-Seymour-Welsh** estimates, and are an essential tool in planar critical percolation.

In particular, they are a step towards proving that the nodal set possesses a non-degenerate scaling limit.

First, they imply (subsequential) limits for crossing probabilities.

In percolation theory, these are known as **Russo-Seymour-Welsh** estimates, and are an essential tool in planar critical percolation.

In particular, they are a step towards proving that the nodal set possesses a non-degenerate scaling limit.

First, they imply (subsequential) limits for crossing probabilities.

Second, the NBC estimates (but not the DBC estimates) also prove that a scaling limit, should it exist, must be non-degenerate.

In percolation theory, these are known as **Russo-Seymour-Welsh** estimates, and are an essential tool in planar critical percolation.

In particular, they are a step towards proving that the nodal set possesses a non-degenerate scaling limit.

First, they imply (subsequential) limits for crossing probabilities.

Second, the NBC estimates (but not the DBC estimates) also prove that a scaling limit, should it exist, must be non-degenerate.

To show rigorously the existence of (sub-sequential) scaling limits one also needs **arm estimates** [Aizenman-Burchard '99]

$$\mathbb{P}[\operatorname{Arm}_k(r,R)] = \mathbb{P}\left[\left(\bigcup_{k \text{ arms}}^{\mathsf{R}}\right] \le c(r/R)^{2+\delta}\right]$$

for some $\delta, k > 0$, which are so far unknown for any field.

Our understanding of DBC estimates is quite well developed:

Our understanding of DBC estimates is quite well developed:

```
Theorem (Köhler-Schindler & Tassion '23)
```

Suppose f is isotropic and positively-correlated. Then the DBC estimates hold.

Our understanding of DBC estimates is quite well developed:

```
Theorem (Köhler-Schindler & Tassion '23)
```

Suppose f is isotropic and positively-correlated. Then the DBC estimates hold.

This built on many previous works which proved DBC estimates under extra assumptions, e.g. **quasi-independence** (more later).

Our understanding of DBC estimates is quite well developed:

Theorem (Köhler-Schindler & Tassion '23)

Suppose f is isotropic and positively-correlated. Then the DBC estimates hold.

This built on many previous works which proved DBC estimates under extra assumptions, e.g. **quasi-independence** (more later).

The KT result is much more general, applying to black/white colourings satisfying (i) **symmetry** under translation, axes reflection, and in black/white, and (ii) **positive associations**.

For concreteness consider the Cauchy fields with covariance

$$K(x) = (1 + |x|^2)^{-\alpha/2}, \quad \alpha > 0.$$

The case $\alpha > 2$ is **short-range** dependent, $\alpha < 2$ **long-range**.

For concreteness consider the Cauchy fields with covariance

$$K(x) = (1 + |x|^2)^{-\alpha/2}, \quad \alpha > 0.$$

The case $\alpha > 2$ is **short-range** dependent, $\alpha < 2$ **long-range**. The first proof of NBC was [Beffara-Gayet '17], assuming $\alpha > 325$.

The motivating example was the Bargmann-Fock field ($\alpha \approx \infty$).

For concreteness consider the **Cauchy fields** with covariance

$$K(x) = (1 + |x|^2)^{-\alpha/2}, \quad \alpha > 0.$$

The case $\alpha > 2$ is **short-range** dependent, $\alpha < 2$ **long-range**. The first proof of NBC was [Beffara-Gayet '17], assuming $\alpha > 325$. The motivating example was the Bargmann-Fock field ($\alpha \approx \infty$). Later refinements by [Belyaev-M. '18] and [Rivera-Vanneuville '19] lowered this to $\alpha > 4$, and then [M.-Vanneuville '20] to $\alpha > 2$.

For concreteness consider the Cauchy fields with covariance

$$K(x) = (1 + |x|^2)^{-\alpha/2}, \quad \alpha > 0.$$

The case $\alpha > 2$ is **short-range** dependent, $\alpha < 2$ **long-range**.

The first proof of NBC was [Beffara-Gayet '17], assuming α > 325.

The motivating example was the Bargmann-Fock field ($\alpha \approx \infty$).

Later refinements by [Belyaev-M. '18] and [Rivera-Vanneuville '19] lowered this to $\alpha > 4$, and then [M.-Vanneuville '20] to $\alpha > 2$.

In a different direction, [Belyaev-M.-Wigman '21] proved DBC/NBC estimates for the Kostlan ensemble on \mathbb{S}^2 .

For concreteness consider the Cauchy fields with covariance

$$K(x) = (1 + |x|^2)^{-\alpha/2}, \quad \alpha > 0.$$

The case $\alpha > 2$ is **short-range** dependent, $\alpha < 2$ **long-range**.

The first proof of NBC was [Beffara-Gayet '17], assuming $\alpha >$ 325.

The motivating example was the Bargmann-Fock field ($\alpha \approx \infty$).

Later refinements by [Belyaev-M. '18] and [Rivera-Vanneuville '19] lowered this to $\alpha > 4$, and then [M.-Vanneuville '20] to $\alpha > 2$.

In a different direction, [Belyaev-M.-Wigman '21] proved DBC/NBC estimates for the Kostlan ensemble on \mathbb{S}^2 .

These results apply to more general fields, but [MV20] required some fairly strong assumptions (white noise decomposition).

Why are NBC estimates harder to prove than DBC estimates?

Why are NBC estimates harder to prove than DBC estimates?

Heuristically, correlations **help** DBC estimates, in the sense that the bounds on DomainCross should **improve** with slower decay.

Why are NBC estimates harder to prove than DBC estimates?

Heuristically, correlations **help** DBC estimates, in the sense that the bounds on DomainCross should **improve** with slower decay.

Consider for example the degenerate field $f(x) \equiv Z$, for which $\mathbb{P}[\text{DomainCross}(a, b)] = 1/2$ for all a, b > 0.

Why are NBC estimates harder to prove than DBC estimates?

Heuristically, correlations **help** DBC estimates, in the sense that the bounds on DomainCross should **improve** with slower decay.

Consider for example the degenerate field $f(x) \equiv Z$, for which $\mathbb{P}[\text{DomainCross}(a, b)] = 1/2$ for all a, b > 0.

Rigorously, [KT '23] prove that

 $c_1 \leq \mathsf{DomainCross}(R, \rho R) \leq c_2$

for $c_1(\rho), c_2(\rho) \in (0, 1)$ uniform over all isotropic pos.-cor. fields.

Why are NBC estimates harder to prove than DBC estimates?

Heuristically, correlations **help** DBC estimates, in the sense that the bounds on DomainCross should **improve** with slower decay.

Consider for example the degenerate field $f(x) \equiv Z$, for which $\mathbb{P}[\text{DomainCross}(a, b)] = 1/2$ for all a, b > 0.

Rigorously, [KT '23] prove that

 $c_1 \leq \mathsf{DomainCross}(R, \rho R) \leq c_2$

for $c_1(\rho), c_2(\rho) \in (0, 1)$ uniform over all isotropic pos.-cor. fields.

By contrast, correlations **weaken** NBC estimates, and we cannot expect uniform bounds (consider again the degenerate field).

New results

New results

We prove two new results on NBC estimates.

New results

We prove two new results on NBC estimates.

The first generalises the result of [MV20] to essentially **all** short-range positively-correlated fields:
We prove two new results on NBC estimates.

The first generalises the result of [MV20] to essentially **all** short-range positively-correlated fields:

Theorem (M. 2023)

Suppose f is isotropic, positively-correlated, $K \in L^1(\mathbb{R}^2)$, and $K(R)R^2 \to 0$ as $R \to \infty$. Then the NBC estimates hold.

We prove two new results on NBC estimates.

The first generalises the result of [MV20] to essentially **all** short-range positively-correlated fields:

Theorem (M. 2023)

Suppose f is isotropic, positively-correlated, $K \in L^1(\mathbb{R}^2)$, and $K(R)R^2 \to 0$ as $R \to \infty$. Then the NBC estimates hold.

The second concerns Cauchy fields in the long-range case α < 2:

We prove two new results on NBC estimates.

The first generalises the result of [MV20] to essentially **all** short-range positively-correlated fields:

Theorem (M. 2023)

Suppose f is isotropic, positively-correlated, $K \in L^1(\mathbb{R}^2)$, and $K(R)R^2 \to 0$ as $R \to \infty$. Then the NBC estimates hold.

The second concerns Cauchy fields in the long-range case α < 2:

Theorem (M. 2022)

The NBC estimates hold for the Cauchy fields for all $\alpha > 0$.

We prove two new results on NBC estimates.

The first generalises the result of [MV20] to essentially **all** short-range positively-correlated fields:

Theorem (M. 2023)

Suppose f is isotropic, positively-correlated, $K \in L^1(\mathbb{R}^2)$, and $K(R)R^2 \to 0$ as $R \to \infty$. Then the NBC estimates hold.

The second concerns Cauchy fields in the long-range case α < 2:

Theorem (M. 2022)

The NBC estimates hold for the Cauchy fields for all $\alpha > 0$.

This is the first proof of NBC estimates for long-range fields.

We prove two new results on NBC estimates.

The first generalises the result of [MV20] to essentially **all** short-range positively-correlated fields:

Theorem (M. 2023)

Suppose f is isotropic, positively-correlated, $K \in L^1(\mathbb{R}^2)$, and $K(R)R^2 \to 0$ as $R \to \infty$. Then the NBC estimates hold.

The second concerns Cauchy fields in the long-range case $\alpha < 2$:

Theorem (M. 2022)

The NBC estimates hold for the Cauchy fields for all $\alpha > 0$.

This is the first proof of NBC estimates for long-range fields.

It applies to general fields with regularly varying covariance, under some assumptions (more later). (a + b) = a + b

Question. For the Cauchy fields, what is the behaviour of

 $\lim_{R \to \infty} \mathsf{NodalCross}(R, \rho R)$

as $\alpha \rightarrow$ 0? In particular, does it decay to zero?

Question. For the Cauchy fields, what is the behaviour of

 $\lim_{R \to \infty} \mathsf{NodalCross}(R, \rho R)$

as $\alpha \rightarrow 0$? In particular, does it decay to zero?

Our proof only gives a **lower** bound e^{-c/α^2} , unlikely to be sharp.

Question. For the Cauchy fields, what is the behaviour of

 $\lim_{R \to \infty} \mathsf{NodalCross}(R, \rho R)$

as $\alpha \rightarrow$ 0? In particular, does it decay to zero?

Our proof only gives a **lower** bound e^{-c/α^2} , unlikely to be sharp.

Conjecture. The NBC estimates **fail** if correlations decay **sub-polynomially**, i.e. $\mathcal{K}(R)R^{\alpha} \rightarrow \infty$ for every $\alpha > 0$.

Question. For the Cauchy fields, what is the behaviour of

 $\lim_{R \to \infty} \mathsf{NodalCross}(R, \rho R)$

as $\alpha \rightarrow$ 0? In particular, does it decay to zero?

Our proof only gives a **lower** bound e^{-c/α^2} , unlikely to be sharp.

Conjecture. The NBC estimates **fail** if correlations decay **sub-polynomially**, i.e. $K(R)R^{\alpha} \rightarrow \infty$ for every $\alpha > 0$.

Conjecture (Harris, Weinrib, Bogomolny-Schmit). The DBC and NBC estimates hold for the random plane wave.

Question. For the Cauchy fields, what is the behaviour of

 $\lim_{R \to \infty} \mathsf{NodalCross}(R, \rho R)$

as $\alpha \rightarrow$ 0? In particular, does it decay to zero?

Our proof only gives a **lower** bound e^{-c/α^2} , unlikely to be sharp.

Conjecture. The NBC estimates **fail** if correlations decay **sub-polynomially**, i.e. $K(R)R^{\alpha} \rightarrow \infty$ for every $\alpha > 0$.

Conjecture (Harris, Weinrib, Bogomolny-Schmit). The DBC and NBC estimates hold for the random plane wave.

Conjecture (Harris, Weinrib). The DBC and NBC estimates hold for short-range fields regardless of positive correlations.

Question. For the Cauchy fields, what is the behaviour of

 $\lim_{R \to \infty} \mathsf{NodalCross}(R, \rho R)$

as $\alpha \rightarrow$ 0? In particular, does it decay to zero?

Our proof only gives a **lower** bound e^{-c/α^2} , unlikely to be sharp.

Conjecture. The NBC estimates **fail** if correlations decay **sub-polynomially**, i.e. $K(R)R^{\alpha} \rightarrow \infty$ for every $\alpha > 0$.

Conjecture (Harris, Weinrib, Bogomolny-Schmit). The DBC and NBC estimates hold for the random plane wave.

Conjecture (Harris, Weinrib). The DBC and NBC estimates hold for short-range fields regardless of positive correlations.

Question. Is there a Harris-type criterion for NBC estimates that includes the Cauchy fields?

Recall that, assuming f is isotropic,

NBC estimates \implies DBC estimates

but not the converse.

Recall that, assuming f is isotropic,

NBC estimates \implies DBC estimates

but not the converse.

However

DBC estimates + 'quasi-independence' \implies NBC estimates where QI means that, for disjoint domains D_1, D_2 ,

$$\lim_{R \to \infty} \sup_{\substack{A_1 \in \sigma(RD_1), A_2 \in \sigma(RD_2) \\ A_i \text{ crossing event}}} \left| \mathbb{P}[A_1 \cap A_2] - \mathbb{P}[A_1]\mathbb{P}[A_2] \right| = 0.$$

Recall that, assuming f is isotropic,

NBC estimates \implies DBC estimates

but not the converse.

However

DBC estimates + 'quasi-independence' \implies NBC estimates where QI means that, for disjoint domains D_1, D_2 ,

$$\lim_{R \to \infty} \sup_{\substack{A_1 \in \sigma(RD_1), A_2 \in \sigma(RD_2) \\ A_i \text{ crossing event}}} \left| \mathbb{P}[A_1 \cap A_2] - \mathbb{P}[A_1]\mathbb{P}[A_2] \right| = 0.$$

This path was pioneered in [BG17], and followed in later works.

Recall that, assuming f is isotropic,

NBC estimates \implies DBC estimates

but not the converse.

However

DBC estimates + 'quasi-independence' \implies NBC estimates where QI means that, for disjoint domains D_1, D_2 ,

$$\lim_{R \to \infty} \sup_{\substack{A_1 \in \sigma(RD_1), A_2 \in \sigma(RD_2) \\ A_i \text{ crossing event}}} \left| \mathbb{P}[A_1 \cap A_2] - \mathbb{P}[A_1]\mathbb{P}[A_2] \right| = 0.$$

This path was pioneered in [BG17], and followed in later works.

One can replace 'crossing event' with **topological event**, which was the setting in which [RV18] proved QI for $\alpha > 4$.

Recall that, assuming f is isotropic,

NBC estimates \implies DBC estimates

but not the converse.

However

DBC estimates + 'quasi-independence' \implies NBC estimates where QI means that, for disjoint domains D_1, D_2 ,

$$\lim_{R \to \infty} \sup_{\substack{A_1 \in \sigma(RD_1), A_2 \in \sigma(RD_2) \\ A_i \text{ crossing event}}} \left| \mathbb{P}[A_1 \cap A_2] - \mathbb{P}[A_1]\mathbb{P}[A_2] \right| = 0.$$

This path was pioneered in [BG17], and followed in later works.

One can replace 'crossing event' with **topological event**, which was the setting in which [RV18] proved QI for $\alpha > 4$.

One can also replace 'crossing event' with **monotone event**, which was exploited in [MV20] to lower to $\alpha > 2$.

1. Quantitative discretisation [BG '17, NSV '07]

- 1. Quantitative discretisation [BG '17, NSV '07]
- 2. Interpolation-type covariance formulae [RV '18, BMR '20]

- 1. Quantitative discretisation [BG '17, NSV '07]
- 2. Interpolation-type covariance formulae [RV '18, BMR '20]
- 3. Finite-range approximation using white-noise truncation [MV '20]

- 1. Quantitative discretisation [BG '17, NSV '07]
- 2. Interpolation-type covariance formulae [RV '18, BMR '20]
- 3. Finite-range approximation using white-noise truncation [MV '20]

We give a new approach which works in wider generality:

- 1. Quantitative discretisation [BG '17, NSV '07]
- 2. Interpolation-type covariance formulae [RV '18, BMR '20]
- 3. Finite-range approximation using white-noise truncation [MV '20]

We give a new approach which works in wider generality:

Proposition

Suppose f is isotropic, $K \in L^1$, $\int K > 0$, and $K(R)R^2 \to 0$ as $R \to \infty$. Then QI holds for monotone events.

- 1. Quantitative discretisation [BG '17, NSV '07]
- 2. Interpolation-type covariance formulae [RV '18, BMR '20]
- 3. Finite-range approximation using white-noise truncation [MV '20]

We give a new approach which works in wider generality:

Proposition

Suppose f is isotropic, $K \in L^1$, $\int K > 0$, and $K(R)R^2 \to 0$ as $R \to \infty$. Then QI holds for monotone events.

This generality comes at a cost: the **quantitative** bounds on the error are typically weaker than with the other approaches.

We deduce QI from the following **sprinkled decoupling inequality** for arbitrary Gaussian vectors:

We deduce QI from the following **sprinkled decoupling inequality** for arbitrary Gaussian vectors:

Proposition (Sprinkled decoupling. M. '23)

Let X be a Gaussian vector in \mathbb{R}^n . Then for all $I_1, I_2 \subseteq \{1, ..., n\}$, increasing $A_i \in \sigma(I_1)$, and $\varepsilon > 0$,

$$\mathbb{P}[X \in A_1 \cap A_2] - \mathbb{P}[X + \varepsilon \in A_1]\mathbb{P}[X + \varepsilon \in A_2] \leq \frac{36\|K_{I_1, I_2}\|_{\infty}}{\varepsilon^2}.$$

We deduce QI from the following **sprinkled decoupling inequality** for arbitrary Gaussian vectors:

Proposition (Sprinkled decoupling. M. '23)

Let X be a Gaussian vector in \mathbb{R}^n . Then for all $I_1, I_2 \subseteq \{1, ..., n\}$, increasing $A_i \in \sigma(I_1)$, and $\varepsilon > 0$,

$$\mathbb{P}[X \in A_1 \cap A_2] - \mathbb{P}[X + \varepsilon \in A_1]\mathbb{P}[X + \varepsilon \in A_2] \leq \frac{36\|K_{I_1, I_2}\|_{\infty}}{\varepsilon^2}.$$

Question. Can the error be improved to $c_1 e^{-c_2 \varepsilon^2 / ||K_{l_1, l_2}||_{\infty}}$?

For increasing $A \in \sigma(I)$,

$$\mathbb{P}[X + \varepsilon \in A] - \mathbb{P}[X \in A] \le \frac{\varepsilon \sqrt{\operatorname{Cap}(I)}}{2}$$

where $\operatorname{Cap}(I) = \inf\{\|h\|_{H}^{2} : h \ge 1 \text{ on } I\}.$

For increasing $A \in \sigma(I)$,

$$\mathbb{P}[X + \varepsilon \in A] - \mathbb{P}[X \in A] \le \frac{\varepsilon \sqrt{\operatorname{Cap}(I)}}{2}$$

where $\operatorname{Cap}(I) = \inf\{\|h\|_{H}^{2} : h \ge 1 \text{ on } I\}.$

Proof.

For increasing $A \in \sigma(I)$,

$$\mathbb{P}[X + \varepsilon \in A] - \mathbb{P}[X \in A] \leq rac{\varepsilon \sqrt{\operatorname{Cap}(I)}}{2}$$

where $Cap(I) = inf\{||h||_{H}^{2} : h \ge 1 \text{ on } I\}.$

Proof. Choose $h \in H$ such that $h|_I \ge 1$. Then

For increasing $A \in \sigma(I)$,

$$\mathbb{P}[X + \varepsilon \in A] - \mathbb{P}[X \in A] \leq rac{\varepsilon \sqrt{\operatorname{Cap}(I)}}{2}$$

where $Cap(I) = inf\{||h||_{H}^{2} : h \ge 1 \text{ on } I\}.$

Proof. Choose $h \in H$ such that $h|_I \ge 1$. Then

$$\mathbb{P}[X + \varepsilon \in A] - \mathbb{P}[X \in A] \le \mathbb{P}[X + \varepsilon h \in A] - \mathbb{P}[X \in A]$$

For increasing $A \in \sigma(I)$,

$$\mathbb{P}[X + \varepsilon \in A] - \mathbb{P}[X \in A] \leq rac{\varepsilon \sqrt{\operatorname{Cap}(I)}}{2}$$

where $Cap(I) = inf\{||h||_{H}^{2} : h \ge 1 \text{ on } I\}.$

Proof. Choose $h \in H$ such that $h|_I \ge 1$. Then

$$\mathbb{P}[X + \varepsilon \in A] - \mathbb{P}[X \in A] \le \mathbb{P}[X + \varepsilon h \in A] - \mathbb{P}[X \in A]$$

 $\le d_{TV}(X + \varepsilon h, X)$

15 | 32

For increasing $A \in \sigma(I)$,

$$\mathbb{P}[X + \varepsilon \in A] - \mathbb{P}[X \in A] \leq rac{\varepsilon \sqrt{\operatorname{Cap}(I)}}{2}$$

where $Cap(I) = inf\{||h||_{H}^{2} : h \ge 1 \text{ on } I\}.$

Proof. Choose $h \in H$ such that $h|_I \ge 1$. Then

$$\mathbb{P}[X + \varepsilon \in A] - \mathbb{P}[X \in A] \le \mathbb{P}[X + \varepsilon h \in A] - \mathbb{P}[X \in A]$$

 $\le d_{TV}(X + \varepsilon h, X)$
 $\le \sqrt{d_{KL}(X + \varepsilon h ||X)/2}$
We combine with the following 'stability' estimate:

For increasing $A \in \sigma(I)$,

$$\mathbb{P}[X + \varepsilon \in A] - \mathbb{P}[X \in A] \leq rac{arepsilon \sqrt{\operatorname{Cap}(I)}}{2}$$

where $Cap(I) = inf\{||h||_{H}^{2} : h \ge 1 \text{ on } I\}.$

Proof. Choose $h \in H$ such that $h|_I \ge 1$. Then

$$\mathbb{P}[X + arepsilon \in A] - \mathbb{P}[X \in A] \le \mathbb{P}[X + arepsilon h \in A] - \mathbb{P}[X \in A]$$

 $\le d_{TV}(X + arepsilon h, X)$
 $\le \sqrt{d_{KL}(X + arepsilon h||X)/2}$
 $= rac{arepsilon ||h||_H}{2}.$

15 | 32

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の��

Combining these, we obtain a (generic) mixing estimate $\left\| \nabla [A - \nabla A_{n}] - \nabla [A_{n}] \right\|_{2} \leq \left(\sqrt{2 - (L) 2 - (L)} \| L(A_{n}) \|_{2} \right)^{1/3}$

$$\left|\mathbb{P}[A_1 \cap A_2] - \mathbb{P}[A_1]\mathbb{P}[A_2]\right| \leq c \Big(\sqrt{\operatorname{Cap}(I_1)\operatorname{Cap}(I_2)} \|\mathcal{K}_{I_1,I_2}\|_{\infty}\Big)^{1/3}.$$

Combining these, we obtain a (generic) mixing estimate

$$\left|\mathbb{P}[A_1 \cap A_2] - \mathbb{P}[A_1]\mathbb{P}[A_2]\right| \leq c \Big(\sqrt{\operatorname{Cap}(I_1)\operatorname{Cap}(I_2)} \|\mathcal{K}_{I_1,I_2}\|_\infty\Big)^{1/3}.$$

To deduce QI for short-range fields we use the fact that if $K \in L^1$ the capacity has volume-order scaling

$$\operatorname{Cap}(RD) \sim \frac{\operatorname{Vol}(D)R^2}{\int K}.$$

16 | 32

Combining these, we obtain a (generic) mixing estimate

$$\left|\mathbb{P}[A_1 \cap A_2] - \mathbb{P}[A_1]\mathbb{P}[A_2]\right| \leq c \Big(\sqrt{\operatorname{Cap}(I_1)\operatorname{Cap}(I_2)}\|\mathcal{K}_{I_1,I_2}\|_{\infty}\Big)^{1/3}.$$

To deduce QI for short-range fields we use the fact that if $K \in L^1$ the capacity has volume-order scaling

$$\operatorname{Cap}(RD) \sim \frac{\operatorname{Vol}(D)R^2}{\int K}.$$

This proves QI assuming $K \in L^1$, $\int K > 0$, and $K(R)R^2 \rightarrow 0$.

The capacity scaling is

 $\operatorname{Cap}(RD) \sim c_D R^{\alpha}.$

The capacity scaling is

```
\operatorname{Cap}(RD) \sim c_D R^{\alpha}.
```

The same argument then yields a kind of 'spread-out' QI:

The capacity scaling is

 $\operatorname{Cap}(RD) \sim c_D R^{\alpha}.$

The same argument then yields a kind of 'spread-out' QI:

Let D_1 and D_2 be unit balls separated by T > 0. Then

$$\sup_{\substack{A_1 \in \sigma(RD_1), A_2 \in \sigma(RD_2) \\ A_i \text{ monotone}}} \left| \mathbb{P}[A_1 \cap A_2] - \mathbb{P}[A_1]\mathbb{P}[A_2] \right| \leq c_{\mathcal{T}}$$

for some explicit $c_T \to 0$ as $T \to \infty$.

The capacity scaling is

$$\operatorname{Cap}(RD) \sim c_D R^{\alpha}.$$

The same argument then yields a kind of 'spread-out' QI:

Let D_1 and D_2 be unit balls separated by T > 0. Then

$$\sup_{\substack{A_1 \in \sigma(RD_1), A_2 \in \sigma(RD_2) \\ A_i \text{ monotone}}} \left| \mathbb{P}[A_1 \cap A_2] - \mathbb{P}[A_1]\mathbb{P}[A_2] \right| \le c_T$$

for some explicit $c_T \to 0$ as $T \to \infty$.

This is sufficient to deduce NBC estimates for sufficiently large aspect ratio $\rho \gg 1$, but not all aspect ratios.

QI is only known for $\alpha > 2$ and only believed to be true if $\alpha > 3/2$, so we need a new approach.

QI is only known for $\alpha>2$ and only believed to be true if $\alpha>3/2,$ so we need a new approach.

We make the simple observation that QI can be replaced with a weaker definition of mixing.

QI is only known for $\alpha>2$ and only believed to be true if $\alpha>3/2$, so we need a new approach.

We make the simple observation that QI can be replaced with a weaker definition of mixing.

We say f satisfies **weak ratio mixing** if, for every $\varepsilon > 0$ and disjoint domains D_1, D_2 ,

 $\liminf_{R\to\infty} \inf \left\{ \mathbb{P}[A_1 \cap A_2] : A_i \in \sigma(RD_i) \text{ monotone}, \mathbb{P}[A_1] \ge \varepsilon, \mathbb{P}[A_2] \ge \varepsilon \right\} > 0.$

QI is only known for $\alpha > 2$ and only believed to be true if $\alpha > 3/2$, so we need a new approach.

We make the simple observation that QI can be replaced with a weaker definition of mixing.

We say f satisfies **weak ratio mixing** if, for every $\varepsilon > 0$ and disjoint domains D_1, D_2 ,

 $\liminf_{R\to\infty} \inf \left\{ \mathbb{P}[A_1 \cap A_2] : A_i \in \sigma(RD_i) \text{ monotone}, \mathbb{P}[A_1] \ge \varepsilon, \mathbb{P}[A_2] \ge \varepsilon \right\} > 0.$

Essentially we replace **asymptotic decorrelation** with **not asymptotic full correlation**.

QI is only known for $\alpha>2$ and only believed to be true if $\alpha>3/2,$ so we need a new approach.

We make the simple observation that QI can be replaced with a weaker definition of mixing.

We say f satisfies **weak ratio mixing** if, for every $\varepsilon > 0$ and disjoint domains D_1, D_2 ,

 $\liminf_{R\to\infty} \inf \left\{ \mathbb{P}[A_1 \cap A_2] : A_i \in \sigma(RD_i) \text{ monotone}, \mathbb{P}[A_1] \ge \varepsilon, \mathbb{P}[A_2] \ge \varepsilon \right\} > 0.$

Essentially we replace **asymptotic decorrelation** with **not asymptotic full correlation**.

We have

DBC estimates + 'weak ratio mixing' \implies NBC estimates.

Proposition

For all $\alpha > 0$, the Cauchy fields satisfy weak ratio mixing.

Proposition

For all $\alpha > 0$, the Cauchy fields satisfy weak ratio mixing.

The proof shows that the lim inf term is bounded below by

$$c_1\min\{1,e^{-c_2/\alpha^2}\}$$

for c_i depending only on ε and D_i .

Proposition

For all $\alpha > 0$, the Cauchy fields satisfy weak ratio mixing.

The proof shows that the liminf term is bounded below by

$$c_1 \min\{1, e^{-c_2/\alpha^2}\}$$

for c_i depending only on ε and D_i .

Question. What is the true behaviour as $\alpha \rightarrow 0$? Does it decay?

The proof of QI in [MV '20] for $\alpha > 2$ was based on a decomposition $f = f_R + g_R$, where:

The proof of QI in [MV '20] for $\alpha > 2$ was based on a decomposition $f = f_R + g_R$, where:

1. f_R is *R*-range dependent;

The proof of QI in [MV '20] for $\alpha > 2$ was based on a decomposition $f = f_R + g_R$, where:

- 1. f_R is *R*-range dependent;
- 2. $\|g_R\|_{RD_i}\|_{\infty} \leq cR^{-\alpha/2}\sqrt{\log R}$ with high probability.

The proof of QI in [MV '20] for $\alpha > 2$ was based on a decomposition $f = f_R + g_R$, where:

1. f_R is *R*-range dependent;

2. $\|g_R\|_{RD_i}\|_{\infty} \leq cR^{-\alpha/2}\sqrt{\log R}$ with high probability.

This was obtained by truncating the white noise decomposition

 $f = q \star W.$

The proof of QI in [MV '20] for $\alpha > 2$ was based on a decomposition $f = f_R + g_R$, where:

- 1. f_R is *R*-range dependent;
- 2. $\|g_R\|_{RD_i}\|_{\infty} \leq cR^{-\alpha/2}\sqrt{\log R}$ with high probability.

This was obtained by truncating the white noise decomposition

$$f = q \star W.$$

We then use the fact that $\operatorname{Cap}(RD_i) \simeq R^2$, so that the CM space contains a function satisfying

$$h|_{RD_i} \gg R^{-lpha/2} \sqrt{\log R}$$
 and $\|h\|_H \ll 1$.

The proof of QI in [MV '20] for $\alpha > 2$ was based on a decomposition $f = f_R + g_R$, where:

1. f_R is *R*-range dependent;

2. $\|g_R\|_{RD_i}\|_{\infty} \leq cR^{-\alpha/2}\sqrt{\log R}$ with high probability.

This was obtained by truncating the white noise decomposition

$$f = q \star W.$$

We then use the fact that $\operatorname{Cap}(RD_i) \simeq R^2$, so that the CM space contains a function satisfying

$$h|_{RD_i} \gg R^{-\alpha/2} \sqrt{\log R}$$
 and $\|h\|_H \ll 1$.

Then we apply the stability estimate

$$|\mathbb{P}[X+h\in A]-\mathbb{P}[A]|\leq \frac{\|h\|_{H}}{2}.$$

Then the CM space only contains functions satisfying

$$h|_{RD_i} \gg R^{-\alpha/2} \sqrt{\log R}$$
 and $\|h\|_H \gg 1$

which makes the stability estimate useless.

Then the CM space only contains functions satisfying

$$h|_{RD_i} \gg R^{-\alpha/2} \sqrt{\log R}$$
 and $\|h\|_H \gg 1$

which makes the stability estimate useless.

To fix this we need to make two improvements:

Then the CM space only contains functions satisfying

$$h|_{RD_i} \gg R^{-\alpha/2} \sqrt{\log R}$$
 and $\|h\|_H \gg 1$

which makes the stability estimate useless.

To fix this we need to make two improvements:

1. Obtain a better decomposition with $||g_R|_{RD_i}||_{\infty} \leq cR^{-\alpha/2}$ (i.e. eliminate the ' $\sqrt{\log}$ ' factor).

Then the CM space only contains functions satisfying

$$h|_{RD_i} \gg R^{-\alpha/2} \sqrt{\log R}$$
 and $\|h\|_H \gg 1$

which makes the stability estimate useless.

To fix this we need to make two improvements:

- 1. Obtain a better decomposition with $||g_R|_{RD_i}||_{\infty} \leq cR^{-\alpha/2}$ (i.e. eliminate the ' $\sqrt{\log}$ ' factor).
- 2. Apply some 'ratio' version of the stability estimate.

To obtain a better decomposition we use a white noise representation that is **filtered-by-scale**.

To obtain a better decomposition we use a white noise representation that is **filtered-by-scale**.

Let $q(x,t) \in L^2_{sym}(\mathbb{R}^2 \times \mathbb{R}^+)$ and W white noise on $\mathbb{R}^2 \times \mathbb{R}^+$.

To obtain a better decomposition we use a white noise representation that is **filtered-by-scale**.

Let $q(x,t) \in L^2_{sym}(\mathbb{R}^2 \times \mathbb{R}^+)$ and W white noise on $\mathbb{R}^2 \times \mathbb{R}^+$.

The extra parameter \mathbb{R}^+ represents **scale** – essentially we filter white noise by its contribution on each scale.

To obtain a better decomposition we use a white noise representation that is **filtered-by-scale**.

Let $q(x,t) \in L^2_{sym}(\mathbb{R}^2 \times \mathbb{R}^+)$ and W white noise on $\mathbb{R}^2 \times \mathbb{R}^+$.

The extra parameter \mathbb{R}^+ represents **scale** – essentially we filter white noise by its contribution on each scale.

Then $f = q \star_1 W$ is a stationary Gaussian field on \mathbb{R}^2 with covariance kernel $q \star_1 q$.

To obtain a better decomposition we use a white noise representation that is **filtered-by-scale**.

Let $q(x,t) \in L^2_{sym}(\mathbb{R}^2 \times \mathbb{R}^+)$ and W white noise on $\mathbb{R}^2 \times \mathbb{R}^+$.

The extra parameter \mathbb{R}^+ represents **scale** – essentially we filter white noise by its contribution on each scale.

Then $f = q \star_1 W$ is a stationary Gaussian field on \mathbb{R}^2 with covariance kernel $q \star_1 q$.

We say that $f = q \star_1 W$ has a **scale-mixture** decomposition if

$$q(x,t) = \sqrt{w(t)}Q(|x|/t).$$

To obtain a better decomposition we use a white noise representation that is **filtered-by-scale**.

Let $q(x,t) \in L^2_{sym}(\mathbb{R}^2 \times \mathbb{R}^+)$ and W white noise on $\mathbb{R}^2 \times \mathbb{R}^+$.

The extra parameter \mathbb{R}^+ represents **scale** – essentially we filter white noise by its contribution on each scale.

Then $f = q \star_1 W$ is a stationary Gaussian field on \mathbb{R}^2 with covariance kernel $q \star_1 q$.

We say that $f = q \star_1 W$ has a **scale-mixture** decomposition if

$$q(x,t) = \sqrt{w(t)}Q(|x|/t).$$

Fact. The Cauchy field has a scale-mixture decomposition with $w(t) = c_{\alpha}t^{-\alpha-3}e^{-1/(4t^2)}$ and $Q(x) = e^{-x^2}$, i.e. it is a scale mixture of Bargmann-Fock fields.

We obtain the decomposition $f = f_R + g_R$ by spatial truncation:

We obtain the decomposition $f = f_R + g_R$ by spatial truncation:

Let q_1 be the truncation of q(x, t) at $|x| \leq R$, and $q_2 = q - q_1$.
We obtain the decomposition $f = f_R + g_R$ by spatial truncation: Let q_1 be the truncation of q(x, t) at $|x| \le R$, and $q_2 = q - q_1$. Then define

$$f_R = q_1 \star_1 W$$
 and $g_R = f - f_R = q_2 \star_1 W$.

We obtain the decomposition $f = f_R + g_R$ by spatial truncation: Let q_1 be the truncation of q(x, t) at $|x| \le R$, and $q_2 = q - q_1$. Then define

$$f_R = q_1 \star_1 W$$
 and $g_R = f - f_R = q_2 \star_1 W$.

Because the scale of the fluctuations of the contribution from $t \ge R$ is $\approx R$, we obtain

$$\|g_R|_{RD_i}\|_\infty \leq cR^{-lpha/2}$$
 whp

instead of the naive

$$\|g_R\|_{RD_i}\|_{\infty} \leq cR^{-\alpha/2}\sqrt{\log R}$$
 whp.

イロト イロト イヨト イヨト ヨー わへの

We use the following estimate [Dewan & M. 22]:

We use the following estimate [Dewan & M. 22]:

$$\mathbb{P}[f+h\in A] \geq \mathbb{P}[f\in A] \exp\Big(-rac{\|h\|_{H}^{2}}{2\mathbb{P}[f\in A]}-1\Big).$$

which is a variant of a bound in [Deuschel & Stroock '89].

We use the following estimate [Dewan & M. 22]:

$$\mathbb{P}[f+h\in A] \geq \mathbb{P}[f\in A] \exp\Big(-rac{\|h\|_{H}^{2}}{2\mathbb{P}[f\in A]}-1\Big).$$

which is a variant of a bound in [Deuschel & Stroock '89].

To apply this we need to find a shift (h, h') in the CM space of (f_R, g_R) satisfying

$$h|_{\textit{RD}_1} \geq 1\,, \quad h|_{\textit{RD}_2} \leq -1\,, \quad |h'|_{\textit{RD}_i} \leq 1/2 \quad \text{and} \quad \|(h,h')\|_{\textit{H}} \asymp \textit{R}^{lpha}.$$

We use the following estimate [Dewan & M. 22]:

$$\mathbb{P}[f+h\in A] \geq \mathbb{P}[f\in A] \exp\Big(-rac{\|h\|_{H}^{2}}{2\mathbb{P}[f\in A]}-1\Big).$$

which is a variant of a bound in [Deuschel & Stroock '89].

To apply this we need to find a shift (h, h') in the CM space of (f_R, g_R) satisfying

 $egin{aligned} &h|_{RD_1}\geq 1\,,\quad h|_{RD_2}\leq -1\,,\quad |h'|_{RD_i}\leq 1/2 \quad \mbox{and} \quad \|(h,h')\|_H symp R^lpha. \end{aligned}$ The CM space of the pair (f_R,g_R) is

$$\{(q_1 \star_1 \varphi, q_2 \star_2 \varphi) : \varphi \in L^2(\mathbb{R}^2 \times \mathbb{R}^+)\}.$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ の < ()

We use the following estimate [Dewan & M. 22]:

$$\mathbb{P}[f+h\in A] \geq \mathbb{P}[f\in A] \exp\Big(-rac{\|h\|_{H}^{2}}{2\mathbb{P}[f\in A]}-1\Big).$$

which is a variant of a bound in [Deuschel & Stroock '89].

To apply this we need to find a shift (h, h') in the CM space of (f_R, g_R) satisfying

 $egin{aligned} &h|_{RD_1}\geq 1\,,\quad h|_{RD_2}\leq -1\,,\quad |h'|_{RD_i}\leq 1/2 \quad \mbox{and} \quad \|(h,h')\|_H symp R^lpha. \end{aligned}$ The CM space of the pair (f_R,g_R) is

$$\{(q_1 \star_1 \varphi, q_2 \star_2 \varphi) : \varphi \in L^2(\mathbb{R}^2 \times \mathbb{R}^+)\}.$$

The shift we need is obtained from

$$\varphi(x,t) = \lambda(\mathbb{1}_{RD_1}(x) - \mathbb{1}_{RD_2}(x))\mathbb{1}_{t \in [aR,bR]}$$

for well chosen λ , *a* and *b*.

$$f = \sqrt{w(t)}Q(|x|/t)\star_1 W$$

satisfying:

$$f=\sqrt{w(t)}Q(|x|/t)\star_1 W$$

satisfying:

1. w(t) is non-negative and regularly varying with index $-\gamma < -3$. This implies the covariance is RV with index $-\alpha = 3 - \gamma < 0$;

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ の < ()

 $25 \mid 32$

$$f=\sqrt{w(t)}Q(|x|/t)\star_1 W$$

satisfying:

- 1. w(t) is non-negative and regularly varying with index $-\gamma < -3$. This implies the covariance is RV with index $-\alpha = 3 - \gamma < 0$;
- 2. Q(x) is non-negative, isotropic, positive at the origin, and decays exponentially.

$$f=\sqrt{w(t)}Q(|x|/t)\star_1 W$$

satisfying:

- 1. w(t) is non-negative and regularly varying with index $-\gamma < -3$. This implies the covariance is RV with index $-\alpha = 3 - \gamma < 0$;
- 2. Q(x) is non-negative, isotropic, positive at the origin, and decays exponentially.

Question. Prove ratio mixing and NBC estimates for long-range fields using only that K is RV with index $-\alpha < 0$.

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ の < ()

$$f=\sqrt{w(t)}Q(|x|/t)\star_1 W$$

satisfying:

- 1. w(t) is non-negative and regularly varying with index $-\gamma < -3$. This implies the covariance is RV with index $-\alpha = 3 - \gamma < 0$;
- 2. Q(x) is non-negative, isotropic, positive at the origin, and decays exponentially.

Question. Prove ratio mixing and NBC estimates for long-range fields using only that K is RV with index $-\alpha < 0$.

Question. Find a more general criterion that doesn't require RV.

Proof of sprinkled decoupling

Proof of sprinkled decoupling

Proposition (Sprinkled decoupling. M. '23)

Let X be a Gaussian vector in \mathbb{R}^n . Then for all $I_1, I_2 \subseteq \{1, ..., n\}$, increasing $A_i \in \sigma(I_1)$, and $\varepsilon > 0$,

$$\mathbb{P}[X \in A_1 \cap A_2] - \mathbb{P}[X + \varepsilon \in A_1]\mathbb{P}[X + \varepsilon \in A_2] \leq \frac{36\|K_{I_1, I_2}\|_{\infty}}{\varepsilon^2}.$$

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

Proof of sprinkled decoupling

Proposition (Sprinkled decoupling. M. '23)

Let X be a Gaussian vector in \mathbb{R}^n . Then for all $I_1, I_2 \subseteq \{1, ..., n\}$, increasing $A_i \in \sigma(I_1)$, and $\varepsilon > 0$,

$$\mathbb{P}[X \in A_1 \cap A_2] - \mathbb{P}[X + \varepsilon \in A_1]\mathbb{P}[X + \varepsilon \in A_2] \leq \frac{36\|K_{I_1, I_2}\|_{\infty}}{\varepsilon^2}.$$

We give the proof in the simpler case that $K_{I_1,I_2} \ge 0$.

<ロト<回><巨ト<<

We study the correlation between the **thresholds** of the increasing events A_1 and A_2 .

We study the correlation between the **thresholds** of the increasing events A_1 and A_2 .

We associate to an increasing event A its threshold

$$T_A(X) = \sup\{u \in \mathbb{R} : \{X - u \in A\} \text{ holds}\}.$$

We study the correlation between the **thresholds** of the increasing events A_1 and A_2 .

We associate to an increasing event A its threshold

$$T_A(X) = \sup\{u \in \mathbb{R} : \{X - u \in A\} \text{ holds}\}.$$

It has the key properties that

$$rac{\partial T_A(X)}{\partial X_i} \geq 0$$
 and $\sum_i rac{\partial T_A(X)}{\partial X_i} = 1.$

$$\operatorname{Cov}(T_{A_1}, T_{A_2}) = \int_0^\infty e^{-t} \sum_{1 \le i, j \le n} K(i, j) \mathbb{E}\Big[\frac{\partial T_{A_1}(X)}{\partial X_i} \frac{\partial T_{A_2}(X)}{\partial X_j}\Big] dt$$

$$\operatorname{Cov}(T_{A_1}, T_{A_2}) = \int_0^\infty e^{-t} \sum_{1 \le i, j \le n} \mathcal{K}(i, j) \mathbb{E}\Big[\frac{\partial T_{A_1}(X)}{\partial X_i} \frac{\partial T_{A_2}(X)}{\partial X_j}\Big] dt$$
$$\leq \|\mathcal{K}_{I_1, I_2}\|_\infty \int_0^\infty e^{-t} \sum_{1 \le i, j \le n} \mathbb{E}\Big[\frac{\partial T_{A_1}(X)}{\partial X_i} \frac{\partial T_{A_2}(X)}{\partial X_j}\Big] dt$$

$$\begin{aligned} \operatorname{Cov}(T_{A_1}, T_{A_2}) &= \int_0^\infty e^{-t} \sum_{1 \le i,j \le n} \mathcal{K}(i,j) \mathbb{E}\Big[\frac{\partial T_{A_1}(X)}{\partial X_i} \frac{\partial T_{A_2}(X)}{\partial X_j}\Big] dt \\ &\leq \|\mathcal{K}_{I_1,I_2}\|_\infty \int_0^\infty e^{-t} \sum_{1 \le i,j \le n} \mathbb{E}\Big[\frac{\partial T_{A_1}(X)}{\partial X_i} \frac{\partial T_{A_2}(X)}{\partial X_j}\Big] dt \\ &= \|\mathcal{K}_{I_1,I_2}\|_\infty \int_0^\infty e^{-t} \mathbb{E}\Big[\sum_i \frac{\partial T_{A_1}(X)}{\partial X_i} \sum_j \frac{\partial T_{A_2}(X)}{\partial X_j}\Big] dt \end{aligned}$$

$$Cov(T_{A_1}, T_{A_2}) = \int_0^\infty e^{-t} \sum_{1 \le i,j \le n} \mathcal{K}(i,j) \mathbb{E} \Big[\frac{\partial T_{A_1}(X)}{\partial X_i} \frac{\partial T_{A_2}(X)}{\partial X_j} \Big] dt$$
$$\leq \|\mathcal{K}_{I_1,I_2}\|_\infty \int_0^\infty e^{-t} \sum_{1 \le i,j \le n} \mathbb{E} \Big[\frac{\partial T_{A_1}(X)}{\partial X_i} \frac{\partial T_{A_2}(X)}{\partial X_j} \Big] dt$$
$$= \|\mathcal{K}_{I_1,I_2}\|_\infty \int_0^\infty e^{-t} \mathbb{E} \Big[\sum_i \frac{\partial T_{A_1}(X)}{\partial X_i} \sum_j \frac{\partial T_{A_2}(X)}{\partial X_j} \Big] dt$$

$$= \|K_{I_1,I_2}\|_{\infty}.$$

On the other hand, by Hoeffding's covariance formula

$$\operatorname{Cov}(T_{A_1}, T_{A_2})$$

= $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mathbb{P}[T_{A_1} \le u, T_{A_2} \le v] - \mathbb{P}[T_{A_1} \le u] \mathbb{P}[T_{A_2} \le v] \, du dv$

<□> <週> < ≣> < ≣> < ≣> ≥ のQ (?) 29|32 On the other hand, by Hoeffding's covariance formula

$$\begin{aligned} &\operatorname{Cov}(T_{A_1}, T_{A_2}) \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mathbb{P}[T_{A_1} \le u, T_{A_2} \le v] - \mathbb{P}[T_{A_1} \le u] \mathbb{P}[T_{A_2} \le v] \, du dv \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mathbb{P}[X + u \in A_1, X + v \in A_2] - \mathbb{P}[X + u \in A_1] \mathbb{P}[X + v \in A_2] \, du dv \end{aligned}$$

<□> <週> < ≣> < ≣> < ≣> ≥ のQ (?) 29|32 On the other hand, by Hoeffding's covariance formula

$$Cov(T_{A_1}, T_{A_2})$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mathbb{P}[T_{A_1} \le u, T_{A_2} \le v] - \mathbb{P}[T_{A_1} \le u] \mathbb{P}[T_{A_2} \le v] \, du dv$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mathbb{P}[X + u \in A_1, X + v \in A_2] - \mathbb{P}[X + u \in A_1] \mathbb{P}[X + v \in A_2] \, du dv$$

$$\geq \int_{0}^{\varepsilon} \int_{0}^{\varepsilon} \mathbb{P}[X + u \in A_1, X + v \in A_2] - \mathbb{P}[X + u \in A_1] \mathbb{P}[X + v \in A_2] \, du dv$$

where the last step used **positive associations**

$$\mathbb{P}[X+u\in A_1, X+v\in A_2]-\mathbb{P}[X+u\in A_1]\mathbb{P}[X+v\in A_2]\geq 0.$$

Putting this together

```
\int_0^{\varepsilon} \int_0^{\varepsilon} \mathbb{P}[X+u \in A_1, X+v \in A_2] - \mathbb{P}[X+u \in A_1]\mathbb{P}[X+v \in A_2] \, du dv
```

 $\leq \|\mathbf{K}_{\mathbf{I}_1,\mathbf{I}_2}\|_{\infty}$

Putting this together

 $\int_0^{\varepsilon} \int_0^{\varepsilon} \mathbb{P}[X+u \in A_1, X+v \in A_2] - \mathbb{P}[X+u \in A_1]\mathbb{P}[X+v \in A_2] \, du dv$

 $\leq \|K_{I_1,I_2}\|_{\infty}$

so (again by PA) there exists $u, v \in [0, \varepsilon]$ such that

$$\begin{split} \mathbb{P}[X+u \in A_1, X+v \in A_2] - \mathbb{P}[X+u \in A_1] \mathbb{P}[X+v \in A_2] \\ \\ \leq \|K_{l_1, l_2}\|_{\infty} / \varepsilon^2. \end{split}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

Putting this together

 $\int_0^{\varepsilon} \int_0^{\varepsilon} \mathbb{P}[X+u \in A_1, X+v \in A_2] - \mathbb{P}[X+u \in A_1]\mathbb{P}[X+v \in A_2] \, du dv$

 $\leq \|K_{I_1,I_2}\|_{\infty}$

so (again by PA) there exists $u, v \in [0, \varepsilon]$ such that

$$\begin{split} \mathbb{P}[X+u \in A_1, X+v \in A_2] - \mathbb{P}[X+u \in A_1] \mathbb{P}[X+v \in A_2] \\ \leq \|\mathcal{K}_{l_1, l_2}\|_{\infty} / \varepsilon^2. \end{split}$$

By monotonicity the LHS is at least

$$\mathbb{P}[X \in A_1 \cap A_2] - \mathbb{P}[X + \varepsilon \in A_1]\mathbb{P}[X + \varepsilon \in A_2]$$

which ends the proof.

For the general result, the idea is to reduce to the case $K_{l_1,l_2} \ge 0$ by perturbing X with a small independent Gaussian vector Y.

For the general result, the idea is to reduce to the case $K_{l_1,l_2} \ge 0$ by perturbing X with a small independent Gaussian vector Y.

This works at the cost of increasing the constant from 1 to 36.

For the general result, the idea is to reduce to the case $K_{l_1,l_2} \ge 0$ by perturbing X with a small independent Gaussian vector Y.

This works at the cost of increasing the constant from 1 to 36.

Question. Is the inequality true with constant 1 in general?

Thank you!

S. Muirhead, 'Percolation of strongly correlated Gaussian fields II: Sharpness of the phase transition', preprint, 2022

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の��

32 | 32

S. Muirhead, 'A sprinkled decoupling inequality for Gaussian vectors and applications', preprint, 2023