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Kac polynomials with normal coefficients; degree = 500
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Uniform zero distribution of random polynomials

Consider Pn(z) =
∑n

k=0 Ak zk with random coefficients Ak ∈ C and zeros Zk , k = 1, . . . ,n.
Let τn := 1

n

∑n
k=1 δZk and dµT(eit) := dt/(2π).

Question: When τn
w→ µT with probability one (a.s.)?

Selected early results: Hammersley, 1956; Shparo&Shur, 1962; Arnold, 1966;
Shepp&Vanderbei, 1995; Ibragimov&Zeitouni, 1997

C1 Ak ∈ C are i.i.d. r.v. with P(A0 = 0) < 1 and E[log+ |A0|] < ∞.

Ibragimov and Zaporozhets, 2013: τn
w→ µT a.s. ⇔ C1

Simpler proofs: Fernández, 2017; Pritsker&Ramachandran, 2017
Arnold, 1966: C1 ⇔ lim supn→∞ |An|1/n = 1 a.s.
Hence the radius of convergence for

∑∞
n=0 Anzn is 1 a.s.

C2 Ak ∈ C are identically distributed r.v. with E[| log |A0||] < ∞.

Pritsker, 2014: C2 ⇒ τn
w→ µT a.s.

Remark: C2 ⇔ limn→∞ |An|1/n = 1 a.s.
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Random polynomials spanned by general bases
Let E ⊂ C be compact, cap(E) > 0, with the equilibrium measure µE . Define
∥Pn∥E := supz∈E |Pn(z)|. Let Bk (z) =

∑k
j=0 bj,k z j , where bj,k ∈ C and bk,k ̸= 0 for

k = 0,1,2, . . .. We assume that

lim sup
k→∞

||Bk ||1/k
E ≤ 1 and lim

k→∞
|bk,k |1/k = 1/cap(E).

These assumptions are satisfied for many orthonormal polynomials and other bases.

Pritsker, 2014-15: Suppose that E has empty interior and connected complement. If
{Ak}∞k=0 satisfy either C1 or C2, then the zero counting measures for
Pn(z) =

∑n
k=0 Ak Bk (z) satisfy τn

w→ µE a.s.

Dauvergne, 2021: For any compact set E ⊂ C, cap(E) > 0, we have τn
w→ µE a.s. ⇔ C1,

where C1 means Ak ∈ C are i.i.d. r.v. with P(A0 = 0) < 1 and E[log+ |A0|] < ∞.
Required: For any bounded component G of C \ ∂E , there is a point w ∈ G such that

lim
n→∞

|Pn(w)|1/n ≥ 1 a.s.
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Example: Random orthogonal polynomials on [a,b] ⊂ R
Let E = [a,b] ⊂ R, and let {Bk}∞k=0 be orthonormal with respect to a measure ν supported
on [a,b] such that ν′ > 0 a.e. on [a,b]. Consider the equilibrium measure of [a,b]:

dµ[a.b](x) =
dx

π
√
(x − a)(b − x)

.

We have τn
w→ µ[a,b] a.s. for Pn(z) =

∑n
k=0 Ak Bk (z) under either C1 or C2.

Zeros of a random Legendre polynomial with N (0,1) coefficients:

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5
Legendre polynomials with normal coefficients; degree = 200

[ ]
-1 1

Igor E. Pritsker Uniform distribution for zeros of random polynomials



Dependent coefficients

Let Bk (z) =
∑k

j=0 bj,k z j , where bj,k ∈ C and bk,k ̸= 0 for k = 0,1,2, . . .. Assume that

lim sup
k→∞

||Bk ||1/k
E ≤ 1 and lim

k→∞
|bk,k |1/k = 1/cap(E).

C2 Ak ∈ C are identically distributed r.v. with E[| log |A0||] < ∞.

Pritsker, 2015: Let E ⊂ C be compact, cap(E) > 0. If C2 holds, and there is t > 1 s. t.

sup
z∈C

E
[
(max(0,− log |A0 − z|))t] < ∞, (1)

then the zero counting measures of Pn(z) =
∑n

k=0 Ak Bk (z) satisfy τn
w→ µE a.s.

Note: Condition (1) means that the probability measure of A0 cannot be too concentrated
at any point z ∈ C, and it fails for, e.g., discrete random variables.
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Equidistribution of roots via balayage of measures
Let G ∈ C be a bounded open set, and let ν be a finite Borel measure supported on G.
There is a unique balayage measure ν̂ supported on ∂G, of the same mass as ν, such that∫

log |z − t |dν(t) =
∫

log |z − t |d ν̂(t) for all z ∈ C \ G.

If δw is the Dirac measure at w ∈ G, then δ̂w = ω(w ,G) is the harmonic measure of G at w .

Given a compact set E ∈ C, consider the unbounded component Ω of its complement
C \ E and set G := C \ Ω. For a zero counting measure τn, define its balayage out of G by

τ̃n := τn|C\G + τ̂n|G =
1
n

 ∑
zk∈C\G

δzk +
∑
zk∈G

ω(zk ,G)

 ,

where {zk}n
k=1 are the roots of of Pn(z) =

∑n
k=0 Ak Bk (z).

Theorem: Let E ⊂ C be compact, cap(E) > 0, and keep the same assumptions on the
deterministic basis. If Ak ∈ C are identically distributed r.v. with E[| log |A0||] < ∞, then
τ̃n

w→ µE a.s.
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Expected discrepancy
Let Ar (α, β) = {z : r < |z| < 1/r , α ≤ arg z < β}, 0 < r < 1.

Pritsker, 2014: If {Ak}n
k=0 satisfy E[|Ak |t ] ≤ c, k = 0, . . . ,n, for fixed c, t > 0, and

E[log |A0|] > −∞, E[log |An|] > −∞, then

E
[∣∣∣∣τn(Ar (α, β))−

β − α

2π

∣∣∣∣] ≤ C

√
log n

n
.

Equivalently, E[Nn(Ar (α, β))] =
β − α

2π
n + O

(√
n log n

)
.

If E ⊂ C satisfies dist(E ,T) > 0, then E[Nn(E)] = O(log n).

Theorem If {Ak}n
k=0 satisfy E[|Ak |t ] ≤ c, k = 0, . . . ,n, for fixed c, t > 0, and

E[log |An|] > −∞, then

E
[∣∣∣∣τ̃n(Ar (α, β))−

β − α

2π
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Zeros of lacunary random polynomials

Consider lacunary polynomials Ln(z) =
∑n

k=0 Ak z rk , where {rk}∞k=0 ⊂ N are increasing
and {An}∞n=0 ⊂ C are random variables.

Pritsker, 2018: Let a > 0 and p ≥ 1. Suppose either {An}∞n=0 are non-trivial i.i.d. random
variables satisfying E[(log+ |An|)1/p] < ∞, or {An}∞n=0 are identically distributed and
E[| log |An||1/p] < ∞.
If rn ∼ anp then τn

w→ µT almost surely.

Assume that lim infn→∞ r1/n
n > 1. If {An}∞n=0 ⊂ C are identically distributed and

E[log+ | log |An||] < ∞, then τn
w→ µT almost surely.

Let {An}∞n=0 be identically distributed with E[|An|t ] < ∞ for a fixed t ∈ (0,1], and
E[log |An|] > −∞. If lim infn→∞ r1/n

n = q > 1 then

lim sup
n→∞

∣∣∣∣τn(Ar (α, β))−
β − α

2π

∣∣∣∣1/n

≤ 1
√

q
a.s.
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