Uniform distribution for zeros of random polynomials

Igor E. Pritsker
Oklahoma State University

Random Nodal Domains

Rennes, 5-9 June 2023

Gaussian coefficients, degree 500
Kac polynomials with normal coefficients; degree $=500$

Uniform zero distribution of random polynomials

Consider $P_{n}(z)=\sum_{k=0}^{n} A_{k} z^{k}$ with random coefficients $A_{k} \in \mathbb{C}$ and zeros $Z_{k}, k=1, \ldots, n$.
Let $\tau_{n}:=\frac{1}{n} \sum_{k=1}^{n} \delta_{z_{k}}$ and $d \mu_{\mathbb{T}}\left(e^{i t}\right):=d t /(2 \pi)$.
Question: When $\tau_{n} \xrightarrow{w} \mu_{\mathbb{T}}$ with probability one (a.s.)?
Selected early results: Hammersley, 1956; Shparo\&Shur, 1962; Arnold, 1966;
Shepp\&Vanderbei, 1995; Ibragimov\&Zeitouni, 1997
C1 $A_{k} \in \mathbb{C}$ are i.i.d. r.v. with $\mathbb{P}\left(A_{0}=0\right)<1$ and $\mathbb{E}\left[\log ^{+}\left|A_{0}\right|\right]<\infty$.
Ibragimov and Zaporozhets, 2013: $\tau_{n} \xrightarrow{W} \mu_{\mathbb{T}}$ a.s. $\Leftrightarrow \mathbf{C} 1$
Simpler proofs: Fernández, 2017; Pritsker\&Ramachandran, 2017
Arnold, 1966: $\mathrm{C} 1 \Leftrightarrow \lim \sup _{n \rightarrow \infty}\left|A_{n}\right|^{1 / n}=1$ a.s.
Hence the radius of convergence for $\sum_{n=0}^{\infty} A_{n} z^{n}$ is 1 a.s.
$C 2 A_{k} \in \mathbb{C}$ are identically distributed r.v. with $\mathbb{E}\left[|\log | A_{0}| |\right]<\infty$
Pritsker, 2014: $\mathbf{C} 2 \Rightarrow \tau_{n} \xrightarrow{w} \mu_{\mathrm{T}}$ a.s.
Remark: C2

Uniform zero distribution of random polynomials

Consider $P_{n}(z)=\sum_{k=0}^{n} A_{k} z^{k}$ with random coefficients $A_{k} \in \mathbb{C}$ and zeros $Z_{k}, k=1, \ldots, n$.
Let $\tau_{n}:=\frac{1}{n} \sum_{k=1}^{n} \delta z_{k}$ and $d \mu_{\mathbb{T}}\left(e^{i t}\right):=d t /(2 \pi)$.
Question: When $\tau_{n} \xrightarrow{w} \mu_{\mathbb{T}}$ with probability one (a.s.)?
Selected early results: Hammersley, 1956; Shparo\&Shur, 1962; Arnold, 1966; Shepp\&Vanderbei, 1995; Ibragimov\&Zeitouni, 1997

$\mathrm{C} 2 A_{k} \in \mathbb{C}$ are identically distributed r.v. with $\mathbb{E}\left[|\log | A_{0}| |\right]<\infty$
Pritsker 2014: C? $\Rightarrow \tau_{n} \xrightarrow{w} \mu \mathrm{a}$ as
Remark: C2

Uniform zero distribution of random polynomials

Consider $P_{n}(z)=\sum_{k=0}^{n} A_{k} z^{k}$ with random coefficients $A_{k} \in \mathbb{C}$ and zeros $Z_{k}, k=1, \ldots, n$. Let $\tau_{n}:=\frac{1}{n} \sum_{k=1}^{n} \delta z_{k}$ and $d \mu_{\mathbb{T}}\left(e^{i t}\right):=d t /(2 \pi)$.
Question: When $\tau_{n} \xrightarrow{w} \mu_{\mathbb{T}}$ with probability one (a.s.)?
Selected early results: Hammersley, 1956; Shparo\&Shur, 1962; Arnold, 1966; Shepp\&Vanderbei, 1995; Ibragimov\&Zeitouni, 1997
$\mathrm{C} 1 A_{k} \in \mathbb{C}$ are i.i.d. r.v. with $\mathbb{P}\left(A_{0}=0\right)<1$ and $\mathbb{E}\left[\log ^{+}\left|A_{0}\right|\right]<\infty$.
Ibragimov and Zaporozhets, 2013: $\tau_{n} \xrightarrow{\boldsymbol{W}} \mu_{\mathbb{T}}$ a.s. $\Leftrightarrow \mathbf{C 1}$

Simpler proofs: Fernández, 2017; Pritsker\&Ramachandran, 2017

Arnold, 1966: C1 $\Leftrightarrow \lim \sup _{n \rightarrow \infty}\left|A_{n}\right|^{1 / n}=1$ a.s.
Hence the radius of convergence for $\sum_{n=0}^{\infty} A_{n} z^{n}$ is 1 a.s.
$\mathrm{C} 2 A_{k} \in \mathbb{C}$ are identically distributed r.v. with $\mathbb{E}\left[|\log | A_{0}| |\right]<\infty$
Pritsker, 2014: $\mathbf{C} 2 \Rightarrow \tau_{n} \xrightarrow{w} \mu_{\mathbb{T}}$ a.s.
Remark: $\mathbf{C} 2 \Leftrightarrow \lim _{n \rightarrow \infty}\left|A_{n}\right|^{1 / n}=1$ a.s.

Uniform zero distribution of random polynomials

Consider $P_{n}(z)=\sum_{k=0}^{n} A_{k} z^{k}$ with random coefficients $A_{k} \in \mathbb{C}$ and zeros $Z_{k}, k=1, \ldots, n$. Let $\tau_{n}:=\frac{1}{n} \sum_{k=1}^{n} \delta z_{k}$ and $d \mu_{\mathbb{T}}\left(e^{i t}\right):=d t /(2 \pi)$.
Question: When $\tau_{n} \xrightarrow{w} \mu_{\mathbb{T}}$ with probability one (a.s.)?
Selected early results: Hammersley, 1956; Shparo\&Shur, 1962; Arnold, 1966; Shepp\&Vanderbei, 1995; Ibragimov\&Zeitouni, 1997
$\mathrm{C} 1 A_{k} \in \mathbb{C}$ are i.i.d. r.v. with $\mathbb{P}\left(A_{0}=0\right)<1$ and $\mathbb{E}\left[\log ^{+}\left|A_{0}\right|\right]<\infty$.
Ibragimov and Zaporozhets, 2013: $\tau_{n} \xrightarrow{w} \mu_{\mathbb{T}}$ a.s. \Leftrightarrow C1
Simpler proofs: Fernández, 2017; Pritsker\&Ramachandran, 2017
Arnold, 1966: $\mathrm{C} 1 \Leftrightarrow \lim \sup _{n \rightarrow \infty}\left|A_{n}\right|^{1 / n}=1$ a.s.
Hence the radius of convergence for $\sum_{n=0}^{\infty} A_{n} z^{n}$ is 1 a.s.
$\mathrm{C} 2 A_{k} \in \mathbb{C}$ are identically distributed r.v. with $\mathbb{E}\left[|\log | A_{0}| |\right]<\infty$
Pritsker, 2014: C2 $\Rightarrow \tau_{n} \xrightarrow{w} \mu$ a.s.
Remark: $\mathrm{C} 2 \Leftrightarrow \lim _{n \rightarrow \infty}\left|A_{n}\right|^{1 / n}=1$ a.s.

Uniform zero distribution of random polynomials

Consider $P_{n}(z)=\sum_{k=0}^{n} A_{k} z^{k}$ with random coefficients $A_{k} \in \mathbb{C}$ and zeros $Z_{k}, k=1, \ldots, n$. Let $\tau_{n}:=\frac{1}{n} \sum_{k=1}^{n} \delta z_{k}$ and $d \mu_{\mathbb{T}}\left(e^{i t}\right):=d t /(2 \pi)$.
Question: When $\tau_{n} \xrightarrow{w} \mu_{\mathbb{T}}$ with probability one (a.s.)?
Selected early results: Hammersley, 1956; Shparo\&Shur, 1962; Arnold, 1966; Shepp\&Vanderbei, 1995; Ibragimov\&Zeitouni, 1997
$\mathrm{C} 1 A_{k} \in \mathbb{C}$ are i.i.d. r.v. with $\mathbb{P}\left(A_{0}=0\right)<1$ and $\mathbb{E}\left[\log ^{+}\left|A_{0}\right|\right]<\infty$.
Ibragimov and Zaporozhets, 2013: $\tau_{n} \xrightarrow{w} \mu_{\mathbb{T}}$ a.s. \Leftrightarrow C1
Simpler proofs: Fernández, 2017; Pritsker\&Ramachandran, 2017
Arnold, 1966: $\mathbf{C} 1 \Leftrightarrow \lim \sup _{n \rightarrow \infty}\left|A_{n}\right|^{1 / n}=1$ a.s.
Hence the radius of convergence for $\sum_{n=0}^{\infty} A_{n} z^{n}$ is 1 a.s.
$\mathrm{C} 2 A_{k} \in \mathbb{C}$ are identically distributed r.v. with $\mathbb{E}\left[|\log | A_{0}| |\right]<\infty$
Pritsker, 2014: $\mathbf{C} 2 \Rightarrow \tau_{n} \xrightarrow{w} \mu_{\mathbb{T}}$ a.s.
Remark: $\mathbf{C} 2 \Leftrightarrow \lim _{n \rightarrow \infty}\left|A_{n}\right|^{1 / n}=1$ a.s.

Uniform zero distribution of random polynomials

Consider $P_{n}(z)=\sum_{k=0}^{n} A_{k} z^{k}$ with random coefficients $A_{k} \in \mathbb{C}$ and zeros $Z_{k}, k=1, \ldots, n$. Let $\tau_{n}:=\frac{1}{n} \sum_{k=1}^{n} \delta_{z_{k}}$ and $d \mu_{\mathbb{T}}\left(e^{i t}\right):=d t /(2 \pi)$.
Question: When $\tau_{n} \xrightarrow{w} \mu_{\mathbb{T}}$ with probability one (a.s.)?
Selected early results: Hammersley, 1956; Shparo\&Shur, 1962; Arnold, 1966; Shepp\&Vanderbei, 1995; Ibragimov\&Zeitouni, 1997
$\mathrm{C} 1 A_{k} \in \mathbb{C}$ are i.i.d. r.v. with $\mathbb{P}\left(A_{0}=0\right)<1$ and $\mathbb{E}\left[\log ^{+}\left|A_{0}\right|\right]<\infty$.
Ibragimov and Zaporozhets, 2013: $\tau_{n} \xrightarrow{w} \mu_{\mathbb{T}}$ a.s. $\Leftrightarrow \mathbf{C} 1$
Simpler proofs: Fernández, 2017; Pritsker\&Ramachandran, 2017
Arnold, 1966: $\mathbf{C} 1 \Leftrightarrow \lim \sup _{n \rightarrow \infty}\left|A_{n}\right|^{1 / n}=1$ a.s.
Hence the radius of convergence for $\sum_{n=0}^{\infty} A_{n} z^{n}$ is 1 a.s.
$\mathrm{C} 2 A_{k} \in \mathbb{C}$ are identically distributed r.v. with $\mathbb{E}\left[|\log | A_{0}| |\right]<\infty$.
Pritsker, 2014: $\mathbf{C} 2 \Rightarrow \tau_{n} \xrightarrow{w} \mu_{\mathbb{T}}$ a.s.

Uniform zero distribution of random polynomials

Consider $P_{n}(z)=\sum_{k=0}^{n} A_{k} z^{k}$ with random coefficients $A_{k} \in \mathbb{C}$ and zeros $Z_{k}, k=1, \ldots, n$. Let $\tau_{n}:=\frac{1}{n} \sum_{k=1}^{n} \delta_{z_{k}}$ and $d \mu_{\mathbb{T}}\left(e^{i t}\right):=d t /(2 \pi)$.
Question: When $\tau_{n} \xrightarrow{w} \mu_{\mathbb{T}}$ with probability one (a.s.)?
Selected early results: Hammersley, 1956; Shparo\&Shur, 1962; Arnold, 1966; Shepp\&Vanderbei, 1995; Ibragimov\&Zeitouni, 1997
$\mathrm{C} 1 A_{k} \in \mathbb{C}$ are i.i.d. r.v. with $\mathbb{P}\left(A_{0}=0\right)<1$ and $\mathbb{E}\left[\log ^{+}\left|A_{0}\right|\right]<\infty$.
Ibragimov and Zaporozhets, 2013: $\tau_{n} \xrightarrow{w} \mu_{\mathbb{T}}$ a.s. $\Leftrightarrow \mathbf{C} 1$
Simpler proofs: Fernández, 2017; Pritsker\&Ramachandran, 2017
Arnold, 1966: $\mathbf{C} 1 \Leftrightarrow \lim \sup _{n \rightarrow \infty}\left|A_{n}\right|^{1 / n}=1$ a.s.
Hence the radius of convergence for $\sum_{n=0}^{\infty} A_{n} z^{n}$ is 1 a.s.
$\mathrm{C} 2 A_{k} \in \mathbb{C}$ are identically distributed r.v. with $\mathbb{E}\left[|\log | A_{0}| |\right]<\infty$.
Pritsker, 2014: $\mathbf{C} 2 \Rightarrow \tau_{n} \xrightarrow{W} \mu_{\mathbb{T}}$ a.s.
Remark: $\mathbf{C} 2 \Leftrightarrow \lim _{n \rightarrow \infty}\left|A_{n}\right|^{1 / n}=1$ a.s.

Random polynomials spanned by general bases

Let $E \subset \mathbb{C}$ be compact, $\operatorname{cap}(E)>0$, with the equilibrium measure μ_{E}. Define $\left\|P_{n}\right\|_{E}:=\sup _{z \in E}\left|P_{n}(z)\right|$. Let $B_{k}(z)=\sum_{j=0}^{k} b_{j, k} z^{j}$, where $b_{j, k} \in \mathbb{C}$ and $b_{k, k} \neq 0$ for $k=0,1,2, \ldots$. We assume that

$$
\limsup _{k \rightarrow \infty}\left\|B_{k}\right\|_{E}^{1 / k} \leq 1 \quad \text { and } \quad \lim _{k \rightarrow \infty}\left|b_{k, k}\right|^{1 / k}=1 / \operatorname{cap}(E) .
$$

These assumptions are satisfied for many orthonormal polynomials and other bases.

> Pritsker, 2014-15: Suppose that E has empty interior and connected complement. If $\left\{A_{k}\right\}_{k=0}^{\infty}$ satisfy either $\mathbf{C 1}$ or $\mathbf{C 2}$, then the zero counting measures for
> $P_{n}(z)=\sum_{k=0}^{n} A_{k} B_{k}(z)$ satisfy $\tau_{n} \xrightarrow{w} \mu_{E}$ a.s.

Dauvergne, 2021: For any compact set $E \subset \mathbb{C}, \operatorname{cap}(E)>0$, we have $\tau_{n} \xrightarrow{W} \mu_{E}$ a.s. $\Leftrightarrow \mathbf{C} 1$ where $\mathbf{C} 1$ means $A_{k} \in \mathbb{C}$ are i.i.d. r.v. with $\mathbb{P}\left(A_{0}=0\right)<1$ and $\mathbb{E}\left[\log ^{+}\left|A_{0}\right|\right]<\infty$ Required: For any bounded component G of $\mathbb{C} \backslash \partial E$, there is a point $w \in G$ such that $\lim \left|P_{n}(w)\right|^{1 / n} \geq 1 \quad$ a.s.

Random polynomials spanned by general bases

Let $E \subset \mathbb{C}$ be compact, $\operatorname{cap}(E)>0$, with the equilibrium measure μ_{E}. Define $\left\|P_{n}\right\|_{E}:=\sup _{z \in E}\left|P_{n}(z)\right|$. Let $B_{k}(z)=\sum_{j=0}^{k} b_{j, k} z^{j}$, where $b_{j, k} \in \mathbb{C}$ and $b_{k, k} \neq 0$ for $k=0,1,2, \ldots$. We assume that

$$
\limsup _{k \rightarrow \infty}\left\|B_{k}\right\|_{E}^{1 / k} \leq 1 \quad \text { and } \quad \lim _{k \rightarrow \infty}\left|b_{k, k}\right|^{1 / k}=1 / \operatorname{cap}(E) .
$$

These assumptions are satisfied for many orthonormal polynomials and other bases.
Pritsker, 2014-15: Suppose that E has empty interior and connected complement. If $\left\{A_{k}\right\}_{k=0}^{\infty}$ satisfy either $\mathbf{C 1}$ or $\mathbf{C 2}$, then the zero counting measures for $P_{n}(z)=\sum_{k=0}^{n} A_{k} B_{k}(z)$ satisfy $\tau_{n} \xrightarrow{w} \mu_{E}$ a.s.

Dauvergne, 2021: For any compact set $E \subset \mathbb{C}, \operatorname{cap}(E)>0$, we have $\tau_{n} \xrightarrow{w} \mu_{E}$ a.s. $\Leftrightarrow \mathbf{C} 1$ where $\mathbf{C} 1$ means $A_{k} \in \mathbb{C}$ are i.i.d. r.v. with $\mathbb{P}\left(A_{0}=0\right)<1$ and $\mathbb{E}\left[\log ^{+}\left|A_{0}\right|\right]<\infty$. Required: For any bounded component G of $\mathbb{C} \backslash \partial E$, there is a point $w \in G$ such that $\lim \left|P_{n}(w)\right|^{1 / n} \geq 1 \quad$ a.s.

Random polynomials spanned by general bases

Let $E \subset \mathbb{C}$ be compact, $\operatorname{cap}(E)>0$, with the equilibrium measure μ_{E}. Define $\left\|P_{n}\right\|_{E}:=\sup _{z \in E}\left|P_{n}(z)\right|$. Let $B_{k}(z)=\sum_{j=0}^{k} b_{j, k} z^{j}$, where $b_{j, k} \in \mathbb{C}$ and $b_{k, k} \neq 0$ for $k=0,1,2, \ldots$. We assume that

$$
\limsup _{k \rightarrow \infty}\left\|B_{k}\right\|_{E}^{1 / k} \leq 1 \quad \text { and } \quad \lim _{k \rightarrow \infty}\left|b_{k, k}\right|^{1 / k}=1 / \operatorname{cap}(E) .
$$

These assumptions are satisfied for many orthonormal polynomials and other bases.
Pritsker, 2014-15: Suppose that E has empty interior and connected complement. If $\left\{A_{k}\right\}_{k=0}^{\infty}$ satisfy either $\mathbf{C 1}$ or $\mathbf{C 2}$, then the zero counting measures for $P_{n}(z)=\sum_{k=0}^{n} A_{k} B_{k}(z)$ satisfy $\tau_{n} \xrightarrow{w} \mu_{E}$ a.s.

Dauvergne, 2021: For any compact set $E \subset \mathbb{C}, \operatorname{cap}(E)>0$, we have $\tau_{n} \xrightarrow{w} \mu_{E}$ a.s. $\Leftrightarrow \mathbf{C 1}$, where $\mathbf{C 1}$ means $A_{k} \in \mathbb{C}$ are i.i.d. r.v. with $\mathbb{P}\left(A_{0}=0\right)<1$ and $\mathbb{E}\left[\log ^{+}\left|A_{0}\right|\right]<\infty$.
Required: For any bounded component G of $\mathbb{C} \backslash \partial E$, there is a point $w \in G$ such that

Random polynomials spanned by general bases

Let $E \subset \mathbb{C}$ be compact, $\operatorname{cap}(E)>0$, with the equilibrium measure μ_{E}. Define $\left\|P_{n}\right\|_{E}:=\sup _{z \in E}\left|P_{n}(z)\right|$. Let $B_{k}(z)=\sum_{j=0}^{k} b_{j, k} z^{j}$, where $b_{j, k} \in \mathbb{C}$ and $b_{k, k} \neq 0$ for $k=0,1,2, \ldots$. We assume that

$$
\limsup _{k \rightarrow \infty}\left\|B_{k}\right\|_{E}^{1 / k} \leq 1 \quad \text { and } \quad \lim _{k \rightarrow \infty}\left|b_{k, k}\right|^{1 / k}=1 / \operatorname{cap}(E) .
$$

These assumptions are satisfied for many orthonormal polynomials and other bases.
Pritsker, 2014-15: Suppose that E has empty interior and connected complement. If $\left\{A_{k}\right\}_{k=0}^{\infty}$ satisfy either $\mathbf{C 1}$ or $\mathbf{C 2}$, then the zero counting measures for $P_{n}(z)=\sum_{k=0}^{n} A_{k} B_{k}(z)$ satisfy $\tau_{n} \xrightarrow{w} \mu_{E}$ a.s.

Dauvergne, 2021: For any compact set $E \subset \mathbb{C}, \operatorname{cap}(E)>0$, we have $\tau_{n} \xrightarrow{w} \mu_{E}$ a.s. $\Leftrightarrow \mathbf{C 1}$, where $\mathbf{C} 1$ means $A_{k} \in \mathbb{C}$ are i.i.d. r.v. with $\mathbb{P}\left(A_{0}=0\right)<1$ and $\mathbb{E}\left[\log ^{+}\left|A_{0}\right|\right]<\infty$.
Required: For any bounded component G of $\mathbb{C} \backslash \partial E$, there is a point $w \in G$ such that

$$
\lim _{n \rightarrow \infty}\left|P_{n}(w)\right|^{1 / n} \geq 1 \quad \text { a.s. }
$$

Example: Random orthogonal polynomials on $[a, b] \subset \mathbb{R}$

Let $E=[a, b] \subset \mathbb{R}$, and let $\left\{B_{k}\right\}_{k=0}^{\infty}$ be orthonormal with respect to a measure ν supported on $[a, b]$ such that $\nu^{\prime}>0$ a.e. on $[a, b]$. Consider the equilibrium measure of $[a, b]$:

$$
d \mu_{[a . b]}(x)=\frac{d x}{\pi \sqrt{(x-a)(b-x)}} .
$$

We have $\tau_{n} \xrightarrow{w} \mu_{[a, b]}$ a.s. for $P_{n}(z)=\sum_{k=0}^{n} A_{k} B_{k}(z)$ under either $\mathbf{C} 1$ or $\mathbf{C 2}$.
Zeros of a random Legendre polynomial with $\mathcal{N}(0,1)$ coefficients:

Dependent coefficients

Let $B_{k}(z)=\sum_{j=0}^{k} b_{j, k} z^{j}$, where $b_{j, k} \in \mathbb{C}$ and $b_{k, k} \neq 0$ for $k=0,1,2, \ldots$. Assume that

$$
\limsup _{k \rightarrow \infty}\left\|B_{k}\right\|_{E}^{1 / k} \leq 1 \quad \text { and } \quad \lim _{k \rightarrow \infty}\left|b_{k, k}\right|^{1 / k}=1 / \operatorname{cap}(E) .
$$

$\mathrm{C} 2 A_{k} \in \mathbb{C}$ are identically distributed r.v. with $\mathbb{E}\left[|\log | A_{0}| |\right]<\infty$.
Pritsker, 2015: Let $E \subset \mathbb{C}$ be compact, $\operatorname{cap}(E)>0$. If $\mathbf{C} 2$ holds, and there is $t>1 \mathrm{~s} . \mathrm{t}$.

then the zero counting measures of $P_{n}(z)=\sum_{k=0}^{n} A_{k} B_{k}(z)$ satisfy $\tau_{n} \xrightarrow{w} \mu_{E}$ a.s.
Note: Condition (1) means that the probability measure of A_{0} cannot be too concentrated at any point $z \in \mathbb{C}$, and it fails for, e.g., discrete random variables.

Dependent coefficients

Let $B_{k}(z)=\sum_{j=0}^{k} b_{j, k} z^{j}$, where $b_{j, k} \in \mathbb{C}$ and $b_{k, k} \neq 0$ for $k=0,1,2, \ldots$. Assume that

$$
\limsup _{k \rightarrow \infty}\left\|B_{k}\right\|_{E}^{1 / k} \leq 1 \quad \text { and } \quad \lim _{k \rightarrow \infty}\left|b_{k, k}\right|^{1 / k}=1 / \operatorname{cap}(E) .
$$

C2 $A_{k} \in \mathbb{C}$ are identically distributed r.v. with $\mathbb{E}\left[|\log | A_{0}| |\right]<\infty$.
Pritsker, 2015: Let $E \subset \mathbb{C}$ be compact, $\operatorname{cap}(E)>0$. If $\mathbf{C} 2$ holds, and there is $t>1 \mathrm{~s}$. t .

$$
\begin{equation*}
\sup _{z \in \mathbb{C}} \mathbb{E}\left[\left(\max \left(0,-\log \left|A_{0}-z\right|\right)\right)^{t}\right]<\infty \tag{1}
\end{equation*}
$$

then the zero counting measures of $P_{n}(z)=\sum_{k=0}^{n} A_{k} B_{k}(z)$ satisfy $\tau_{n} \xrightarrow{w} \mu_{E}$ a.s.
Note: Condition (1) means that the probability measure of A_{0} cannot be too concentrated at any point $z \in \mathbb{C}$, and it fails for, e.g., discrete random variables.

Dependent coefficients

Let $B_{k}(z)=\sum_{j=0}^{k} b_{j, k} z^{j}$, where $b_{j, k} \in \mathbb{C}$ and $b_{k, k} \neq 0$ for $k=0,1,2, \ldots$. Assume that

$$
\limsup _{k \rightarrow \infty}\left\|B_{k}\right\|_{E}^{1 / k} \leq 1 \quad \text { and } \quad \lim _{k \rightarrow \infty}\left|b_{k, k}\right|^{1 / k}=1 / \operatorname{cap}(E) .
$$

$\mathrm{C} 2 A_{k} \in \mathbb{C}$ are identically distributed r.v. with $\mathbb{E}\left[|\log | A_{0}| |\right]<\infty$.
Pritsker, 2015: Let $E \subset \mathbb{C}$ be compact, $\operatorname{cap}(E)>0$. If $\mathbf{C} 2$ holds, and there is $t>1 \mathrm{~s}$. t .

$$
\begin{equation*}
\sup _{z \in \mathbb{C}} \mathbb{E}\left[\left(\max \left(0,-\log \left|A_{0}-z\right|\right)\right)^{t}\right]<\infty \tag{1}
\end{equation*}
$$

then the zero counting measures of $P_{n}(z)=\sum_{k=0}^{n} A_{k} B_{k}(z)$ satisfy $\tau_{n} \xrightarrow{w} \mu_{E}$ a.s.
Note: Condition (1) means that the probability measure of A_{0} cannot be too concentrated at any point $z \in \mathbb{C}$, and it fails for, e.g., discrete random variables.

Equidistribution of roots via balayage of measures

Let $G \in \mathbb{C}$ be a bounded open set, and let ν be a finite Borel measure supported on G. There is a unique balayage measure $\hat{\nu}$ supported on ∂G, of the same mass as ν, such that

$$
\int \log |z-t| d \nu(t)=\int \log |z-t| d \hat{\nu}(t) \quad \text { for all } z \in \mathbb{C} \backslash \bar{G} .
$$

If δ_{w} is the Dirac measure at $w \in G$, then $\widehat{\delta_{w}}=\omega(w, G)$ is the harmonic measure of G at w. Given a compact set $E \in \mathbb{C}$, consider the unbounded component Ω of its complement $\mathbb{C} \backslash E$ and set $G:=\mathbb{C} \backslash \bar{\Omega}$. For a zero counting measure τ_{n}, define its balayage out of G by

where $\left\{z_{k}\right\}_{k=1}^{n}$ are the roots of of $P_{n}(z)=\sum_{k=0}^{n} A_{k} B_{k}(z)$
Theorem: Let $E \subset \mathbb{C}$ he compact, $\operatorname{cap}(E)>0$, and keep the same assumptions on the deterministic basis. If $A_{k} \in \mathbb{C}$ are identically distributed r.v. with $\mathbb{E}\left[|\log | A_{0}| |\right]<\infty$, then

Equidistribution of roots via balayage of measures

Let $G \in \mathbb{C}$ be a bounded open set, and let ν be a finite Borel measure supported on G. There is a unique balayage measure $\hat{\nu}$ supported on ∂G, of the same mass as ν, such that

$$
\int \log |z-t| d \nu(t)=\int \log |z-t| d \hat{\nu}(t) \quad \text { for all } z \in \mathbb{C} \backslash \bar{G} .
$$

If δ_{w} is the Dirac measure at $w \in G$, then $\widehat{\delta_{w}}=\omega(w, G)$ is the harmonic measure of G at w.

where $\left\{z_{k}\right\}_{k=1}^{n}$ are the roots of of $P_{n}(z)=\sum_{k=0}^{n} A_{k} B_{k}(z)$
Theorem: Let $E \subset \mathbb{C}$ be compact, $\operatorname{cap}(E)>0$, and keep the same assumptions on the deterministic basis. If $A_{k} \in \mathbb{C}$ are identically distributed r.v. with $\mathbb{E}\left[|\log | A_{0}| |\right]<\infty$, then

Equidistribution of roots via balayage of measures

Let $G \in \mathbb{C}$ be a bounded open set, and let ν be a finite Borel measure supported on G.
There is a unique balayage measure $\hat{\nu}$ supported on ∂G, of the same mass as ν, such that

$$
\int \log |z-t| d \nu(t)=\int \log |z-t| d \hat{\nu}(t) \quad \text { for all } z \in \mathbb{C} \backslash \bar{G} .
$$

If δ_{w} is the Dirac measure at $w \in G$, then $\widehat{\delta_{w}}=\omega(w, G)$ is the harmonic measure of G at w. Given a compact set $E \in \mathbb{C}$, consider the unbounded component Ω of its complement $\mathbb{C} \backslash E$ and set $G:=\mathbb{C} \backslash \bar{\Omega}$. For a zero counting measure τ_{n}, define its balayage out of G by
where $\left\{z_{k}\right\}_{k=1}^{n}$ are the roots of of $P_{n}(z)=\sum_{k=0}^{n} A_{k} B_{k}(z)$.
Theorem: Let $E \subset \mathbb{C}$ be compact, $\operatorname{cap}(E)>0$, and keep the same assumptions on the deterministic basis. If $A_{k} \in \mathbb{C}$ are identically distributed r.v. with $\mathbb{E}\left[|\log | A_{0}| |\right]<\infty$, then

Equidistribution of roots via balayage of measures

Let $G \in \mathbb{C}$ be a bounded open set, and let ν be a finite Borel measure supported on G.
There is a unique balayage measure $\hat{\nu}$ supported on ∂G, of the same mass as ν, such that

$$
\int \log |z-t| d \nu(t)=\int \log |z-t| d \hat{\nu}(t) \quad \text { for all } z \in \mathbb{C} \backslash \bar{G} .
$$

If δ_{w} is the Dirac measure at $w \in G$, then $\widehat{\delta_{w}}=\omega(w, G)$ is the harmonic measure of G at w.
Given a compact set $E \in \mathbb{C}$, consider the unbounded component Ω of its complement $\mathbb{C} \backslash E$ and set $G:=\mathbb{C} \backslash \bar{\Omega}$. For a zero counting measure τ_{n}, define its balayage out of G by

$$
\widetilde{\tau}_{n}:=\left.\tau_{n}\right|_{\mathbb{C} \backslash G}+\widehat{\tau_{n} \mid G}=\frac{1}{n}\left(\sum_{z_{k} \in \mathbb{C} \backslash G} \delta_{z_{k}}+\sum_{z_{k} \in G} \omega\left(z_{k}, G\right)\right),
$$

where $\left\{z_{k}\right\}_{k=1}^{n}$ are the roots of of $P_{n}(z)=\sum_{k=0}^{n} A_{k} B_{k}(z)$.
Theorem: Let $E \subset \mathbb{C}$ be compact, $\operatorname{cap}(E)>0$, and keep the same assumptions on the deterministic basis. If $A_{k} \in \mathbb{C}$ are identically distributed r.v. with $\mathbb{E}\left[|\log | A_{0}| |\right]<\infty$, then

Equidistribution of roots via balayage of measures

Let $G \in \mathbb{C}$ be a bounded open set, and let ν be a finite Borel measure supported on G.
There is a unique balayage measure $\hat{\nu}$ supported on ∂G, of the same mass as ν, such that

$$
\int \log |z-t| d \nu(t)=\int \log |z-t| d \hat{\nu}(t) \quad \text { for all } z \in \mathbb{C} \backslash \bar{G} .
$$

If δ_{w} is the Dirac measure at $w \in G$, then $\widehat{\delta_{w}}=\omega(w, G)$ is the harmonic measure of G at w.
Given a compact set $E \in \mathbb{C}$, consider the unbounded component Ω of its complement $\mathbb{C} \backslash E$ and set $G:=\mathbb{C} \backslash \bar{\Omega}$. For a zero counting measure τ_{n}, define its balayage out of G by

$$
\widetilde{\tau_{n}}:=\left.\tau_{n}\right|_{\mathbb{C} \backslash G}+\widehat{\tau_{n} \mid G}=\frac{1}{n}\left(\sum_{z_{k} \in \mathbb{C} \backslash G} \delta_{z_{k}}+\sum_{z_{k} \in G} \omega\left(z_{k}, G\right)\right)
$$

where $\left\{z_{k}\right\}_{k=1}^{n}$ are the roots of of $P_{n}(z)=\sum_{k=0}^{n} A_{k} B_{k}(z)$.
Theorem: Let $E \subset \mathbb{C}$ be compact, $\operatorname{cap}(E)>0$, and keep the same assumptions on the deterministic basis. If $A_{k} \in \mathbb{C}$ are identically distributed r.v. with $\mathbb{E}\left[|\log | A_{0}| |\right]<\infty$, then $\widetilde{\tau_{n}} \xrightarrow{w} \mu_{E}$ a.s.

Expected discrepancy

Let $A_{r}(\alpha, \beta)=\{z: r<|z|<1 / r, \alpha \leq \arg z<\beta\}, 0<r<1$.
Pritsker, 2014: If $\left\{A_{k}\right\}_{k=0}^{n}$ satisfy $\mathbb{E}\left[\left|A_{k}\right|^{t}\right] \leq c, k=0, \ldots, n$, for fixed $c, t>0$, and $\mathbb{E}\left[\log \left|A_{0}\right|\right]>-\infty, \mathbb{E}\left[\log \left|A_{n}\right|\right]>-\infty$, then

Equivalently, $\mathbb{E}\left[N_{n}\left(A_{r}(\alpha, \beta)\right)\right]=\frac{\beta-\alpha}{2 \pi} n+O(\sqrt{n \log n})$
If $E \subset \mathbb{C}$ satisfies $\operatorname{dist}(E, \mathbb{T})>0$, then $\mathbb{E}\left[N_{n}(E)\right]=O(\log n)$
Theorem If $\left\{A_{k}\right\}_{k=0}^{n}$ satisfy $\mathbb{E}\left[\left|A_{k}\right|^{t}\right] \leq c, k=0, \ldots, n$, for fixed $c, t>0$, and $\mathbb{E}\left[\log \left|A_{n}\right|\right]>-\infty$, then

Expected discrepancy

Let $A_{r}(\alpha, \beta)=\{z: r<|z|<1 / r, \alpha \leq \arg z<\beta\}, 0<r<1$.
Pritsker, 2014: If $\left\{A_{k}\right\}_{k=0}^{n}$ satisfy $\mathbb{E}\left[\left|A_{k}\right|^{t}\right] \leq c, k=0, \ldots, n$, for fixed $c, t>0$, and $\mathbb{E}\left[\log \left|A_{0}\right|\right]>-\infty, \mathbb{E}\left[\log \left|A_{n}\right|\right]>-\infty$, then

$$
\mathbb{E}\left[\left|\tau_{n}\left(A_{r}(\alpha, \beta)\right)-\frac{\beta-\alpha}{2 \pi}\right|\right] \leq C \sqrt{\frac{\log n}{n}}
$$

Equivalently, $\mathbb{E}\left[N_{n}\left(A_{r}(\alpha, \beta)\right)\right]=\frac{\beta-\alpha}{2 \pi} n+O(\sqrt{n \log n})$
If $E \subset \mathbb{C}$ satisfies $\operatorname{dist}(E, \mathbb{T})>0$, then $\mathbb{E}\left[N_{n}(E)\right]=O(\log n)$.
Theorem If $\left\{A_{k}\right\}_{k=0}^{n}$ satisiy $\mathbb{E}\left[\left|A_{k}\right|^{\dagger \dagger}\right] \leq c, k=0, \ldots, n$, for fixed $c, t>0$, and $\mathbb{E}\left[\log \left|A_{n}\right|\right]>-\infty$, then

Expected discrepancy

Let $A_{r}(\alpha, \beta)=\{z: r<|z|<1 / r, \alpha \leq \arg z<\beta\}, 0<r<1$.
Pritsker, 2014: If $\left\{A_{k}\right\}_{k=0}^{n}$ satisfy $\mathbb{E}\left[\left|A_{k}\right|^{t}\right] \leq c, k=0, \ldots, n$, for fixed $c, t>0$, and $\mathbb{E}\left[\log \left|A_{0}\right|\right]>-\infty, \mathbb{E}\left[\log \left|A_{n}\right|\right]>-\infty$, then

$$
\mathbb{E}\left[\left|\tau_{n}\left(A_{r}(\alpha, \beta)\right)-\frac{\beta-\alpha}{2 \pi}\right|\right] \leq C \sqrt{\frac{\log n}{n}} .
$$

Equivalently, $\mathbb{E}\left[N_{n}\left(A_{r}(\alpha, \beta)\right)\right]=\frac{\beta-\alpha}{2 \pi} n+O(\sqrt{n \log n})$.
If $E \subset \mathbb{C}$ satisfies $\operatorname{dist}(E, \mathbb{T})>0$, then $\mathbb{E}\left[N_{n}(E)\right]=O(\log n)$.
Theorem If $\left\{A_{k}\right\}_{k=0}^{n}$ satisfy $\mathbb{E}\left[\left|A_{k}\right|^{t}\right] \leq c, k=0, \ldots, n$, for fixed $c, t>0$, and $\mathbb{E}\left[\log \left|A_{n}\right|\right]>-\infty$, then

Expected discrepancy

Let $A_{r}(\alpha, \beta)=\{z: r<|z|<1 / r, \alpha \leq \arg z<\beta\}, 0<r<1$.
Pritsker, 2014: If $\left\{A_{k}\right\}_{k=0}^{n}$ satisfy $\mathbb{E}\left[\left|A_{k}\right|^{t}\right] \leq c, k=0, \ldots, n$, for fixed $c, t>0$, and $\mathbb{E}\left[\log \left|A_{0}\right|\right]>-\infty, \mathbb{E}\left[\log \left|A_{n}\right|\right]>-\infty$, then

$$
\mathbb{E}\left[\left|\tau_{n}\left(A_{r}(\alpha, \beta)\right)-\frac{\beta-\alpha}{2 \pi}\right|\right] \leq C \sqrt{\frac{\log n}{n}}
$$

Equivalently, $\mathbb{E}\left[N_{n}\left(A_{r}(\alpha, \beta)\right)\right]=\frac{\beta-\alpha}{2 \pi} n+O(\sqrt{n \log n})$.
If $E \subset \mathbb{C}$ satisfies $\operatorname{dist}(E, \mathbb{T})>0$, then $\mathbb{E}\left[N_{n}(E)\right]=O(\log n)$.
Theorem If $\left\{A_{k}\right\}_{k=0}^{n}$ satisfy $\mathbb{E}\left[\left|A_{k}\right|^{t}\right] \leq c, k=0, \ldots, n$, for fixed $c, t>0$, and $\mathbb{E}\left[\log \left|A_{n}\right|\right]>-\infty$, then

Expected discrepancy

Let $A_{r}(\alpha, \beta)=\{z: r<|z|<1 / r, \alpha \leq \arg z<\beta\}, 0<r<1$.
Pritsker, 2014: If $\left\{A_{k}\right\}_{k=0}^{n}$ satisfy $\mathbb{E}\left[\left|A_{k}\right|^{t}\right] \leq c, k=0, \ldots, n$, for fixed $c, t>0$, and $\mathbb{E}\left[\log \left|A_{0}\right|\right]>-\infty, \mathbb{E}\left[\log \left|A_{n}\right|\right]>-\infty$, then

$$
\mathbb{E}\left[\left|\tau_{n}\left(A_{r}(\alpha, \beta)\right)-\frac{\beta-\alpha}{2 \pi}\right|\right] \leq C \sqrt{\frac{\log n}{n}} .
$$

Equivalently, $\mathbb{E}\left[N_{n}\left(A_{r}(\alpha, \beta)\right)\right]=\frac{\beta-\alpha}{2 \pi} n+O(\sqrt{n \log n})$.
If $E \subset \mathbb{C}$ satisfies $\operatorname{dist}(E, \mathbb{T})>0$, then $\mathbb{E}\left[N_{n}(E)\right]=O(\log n)$.
Theorem If $\left\{A_{k}\right\}_{k=0}^{n}$ satisfy $\mathbb{E}\left[\left|A_{k}\right|^{t}\right] \leq c, k=0, \ldots, n$, for fixed $c, t>0$, and $\mathbb{E}\left[\log \left|A_{n}\right|\right]>-\infty$, then

$$
\mathbb{E}\left[\left|\widetilde{\tau}_{n}\left(A_{r}(\alpha, \beta)\right)-\frac{\beta-\alpha}{2 \pi}\right|\right] \leq C \sqrt{\frac{\log n}{n}}
$$

Zeros of lacunary random polynomials

Consider lacunary polynomials $L_{n}(z)=\sum_{k=0}^{n} A_{k} z^{r_{k}}$, where $\left\{r_{k}\right\}_{k=0}^{\infty} \subset \mathbb{N}$ are increasing and $\left\{A_{n}\right\}_{n=0}^{\infty} \subset \mathbb{C}$ are random variables.

Pritsker, 2018: Let $a>0$ and $p \geq 1$. Suppose either $\left\{A_{n}\right\}_{n=0}^{\infty}$ are non-trivial i.i.d. random variables satisfying $\mathbb{E}\left[\left(\log ^{+}\left|A_{n}\right|\right)^{1 / p}\right]<\infty$, or $\left\{A_{n}\right\}_{n=0}^{\infty}$ are identically distributed and $\mathbb{E}\left[\left.|\log | A_{n}\right|^{1 / p}\right]$
If $r_{n} \sim$ anp then $\tau_{n} \xrightarrow{\cdots} \mu_{\text {r }}$ almost surely.
Assume that $\lim \inf _{n \rightarrow \infty} r_{n}^{1 / n}>1$. If $\left\{A_{n}\right\}_{n=0}^{\infty} \subset \mathbb{C}$ are identically distributed and
$\mathbb{E}\left[\log ^{+}|\log | A_{n} \mid \|\right]<\infty$, then $\tau_{n} \xrightarrow{w} \mu_{\mathbb{T}}$ almost surely.
Let $\left\{A_{n}\right\}_{n=0}^{\infty}$ be identically distributed with $\mathbb{E}\left[\left|A_{n}\right|^{t}\right]<\infty$ for a fixed $t \in(0,1]$, and
$\mathbb{E}\left[\log \left|A_{n}\right|\right]>-\infty$. If $\lim \inf _{n \rightarrow \infty} r_{n}^{1 / n}=q>1$ then

Zeros of lacunary random polynomials

Consider lacunary polynomials $L_{n}(z)=\sum_{k=0}^{n} A_{k} z^{r_{k}}$, where $\left\{r_{k}\right\}_{k=0}^{\infty} \subset \mathbb{N}$ are increasing and $\left\{A_{n}\right\}_{n=0}^{\infty} \subset \mathbb{C}$ are random variables.

Pritsker, 2018: Let $a>0$ and $p \geq 1$. Suppose either $\left\{A_{n}\right\}_{n=0}^{\infty}$ are non-trivial i.i.d. random variables satisfying $\mathbb{E}\left[\left(\log ^{+}\left|A_{n}\right|\right)^{1 / p}\right]<\infty$, or $\left\{A_{n}\right\}_{n=0}^{\infty}$ are identically distributed and $\mathbb{E}\left[|\log | A_{n} \|^{1 / p}\right]<\infty$.
If $r_{n} \sim a n^{\rho}$ then $\tau_{n} \xrightarrow{w} \mu_{\mathbb{T}}$ almost surely.
Assume that $\lim \inf _{n \rightarrow \infty} r_{n}^{1 / n}>1$. If $\left\{A_{n}\right\}_{n=0}^{\infty} \subset \mathbb{C}$ are identically distributed and $\mathbb{E}\left[\log ^{+}|\log | A_{n}| |\right]<\infty$, then $\tau_{n} \xrightarrow{w} \mu_{\mathbb{T}}$ almost surely.

Let $\left\{A_{n}\right\}_{n=0}^{\infty}$ be identically distributed with $\mathbb{E}\left[\left|A_{n}\right|^{\dagger \dagger}\right]<\infty$ for a fixed $t \in(0,1]$, and $\mathbb{E}\left[\log \left|A_{n}\right|\right]>-\infty$. If $\lim \inf _{n \rightarrow \infty} r_{n}^{1 / n}=q>1$ then

Zeros of lacunary random polynomials

Consider lacunary polynomials $L_{n}(z)=\sum_{k=0}^{n} A_{k} z^{r_{k}}$, where $\left\{r_{k}\right\}_{k=0}^{\infty} \subset \mathbb{N}$ are increasing and $\left\{A_{n}\right\}_{n=0}^{\infty} \subset \mathbb{C}$ are random variables.

Pritsker, 2018: Let $a>0$ and $p \geq 1$. Suppose either $\left\{A_{n}\right\}_{n=0}^{\infty}$ are non-trivial i.i.d. random variables satisfying $\mathbb{E}\left[\left(\log ^{+}\left|A_{n}\right|\right)^{1 / p}\right]<\infty$, or $\left\{A_{n}\right\}_{n=0}^{\infty}$ are identically distributed and $\mathbb{E}\left[|\log | A_{n} \|^{1 / p}\right]<\infty$.
If $r_{n} \sim$ an n^{ρ} then $\tau_{n} \xrightarrow{w} \mu_{\mathbb{T}}$ almost surely.
Assume that $\lim \inf _{n \rightarrow \infty} r_{n}^{1 / n}>1$. If $\left\{A_{n}\right\}_{n=0}^{\infty} \subset \mathbb{C}$ are identically distributed and $\mathbb{E}\left[\log ^{+}|\log | A_{n}| |\right]<\infty$, then $\tau_{n} \xrightarrow{w} \mu_{\mathbb{T}}$ almost surely.

Let $\left\{A_{n}\right\}_{n=0}^{\infty}$ be identically distributed with $\mathbb{E}\left[\left|A_{n}\right|^{t}\right]<\infty$ for a fixed $t \in(0,1]$, and $\mathbb{E}\left[\log \left|A_{n}\right|\right]>-\infty$. If $\lim \inf _{n \rightarrow \infty} r_{n}^{1 / n}=q>1$ then

Zeros of lacunary random polynomials

Consider lacunary polynomials $L_{n}(z)=\sum_{k=0}^{n} A_{k} z^{r_{k}}$, where $\left\{r_{k}\right\}_{k=0}^{\infty} \subset \mathbb{N}$ are increasing and $\left\{A_{n}\right\}_{n=0}^{\infty} \subset \mathbb{C}$ are random variables.
Pritsker, 2018: Let $a>0$ and $p \geq 1$. Suppose either $\left\{A_{n}\right\}_{n=0}^{\infty}$ are non-trivial i.i.d. random variables satisfying $\mathbb{E}\left[\left(\log ^{+}\left|A_{n}\right|\right)^{1 / p}\right]<\infty$, or $\left\{A_{n}\right\}_{n=0}^{\infty}$ are identically distributed and $\mathbb{E}\left[|\log | A_{n} \|^{1 / p}\right]<\infty$.
If $r_{n} \sim$ an n^{ρ} then $\tau_{n} \xrightarrow{w} \mu_{\mathbb{T}}$ almost surely.
Assume that $\lim \inf _{n \rightarrow \infty} r_{n}^{1 / n}>1$. If $\left\{A_{n}\right\}_{n=0}^{\infty} \subset \mathbb{C}$ are identically distributed and $\mathbb{E}\left[\log ^{+}|\log | A_{n}| |\right]<\infty$, then $\tau_{n} \xrightarrow{w} \mu_{\mathbb{T}}$ almost surely.

Let $\left\{A_{n}\right\}_{n=0}^{\infty}$ be identically distributed with $\mathbb{E}\left[\left|A_{n}\right|^{t}\right]<\infty$ for a fixed $t \in(0,1]$, and $\mathbb{E}\left[\log \left|A_{n}\right|\right]>-\infty$. If $\lim \inf _{n \rightarrow \infty} r_{n}^{1 / n}=q>1$ then

$$
\limsup _{n \rightarrow \infty}\left|\tau_{n}\left(A_{r}(\alpha, \beta)\right)-\frac{\beta-\alpha}{2 \pi}\right|^{1 / n} \leq \frac{1}{\sqrt{q}} \quad \text { a.s. }
$$

