Uniform distribution for zeros of random polynomials

Igor E. Pritsker

Oklahoma State University

Random Nodal Domains Rennes, 5–9 June 2023

Gaussian coefficients, degree 500



Igor E. Pritsker Uniform distribution for zeros of random polynomials

Consider $P_n(z) = \sum_{k=0}^n A_k z^k$ with random coefficients $A_k \in \mathbb{C}$ and zeros Z_k , k = 1, ..., n. Let $\tau_n := \frac{1}{n} \sum_{k=1}^n \delta_{Z_k}$ and $d\mu_{\mathbb{T}}(e^{it}) := dt/(2\pi)$. Question: When $\tau_n \stackrel{w}{\to} \mu_{\mathbb{T}}$ with probability one (a.s.)?

Selected early results: Hammersley, 1956; Shparo&Shur, 1962; Arnold, 1966; Shepp&Vanderbei, 1995; Ibragimov&Zeitouni, 1997

C1 $A_k \in \mathbb{C}$ are i.i.d. r.v. with $\mathbb{P}(A_0 = 0) < 1$ and $\mathbb{E}[\log^+ |A_0|] < \infty$

Ibragimov and Zaporozhets, 2013: $\tau_n \stackrel{\text{W}}{\to} \mu_{\mathbb{T}}$ a.s. \Leftrightarrow C1 **Simpler proofs:** Fernández, 2017; Pritsker&Ramachandran, 201 **Arnold, 1966:** C1 $\Leftrightarrow \limsup_{n\to\infty} |A_n|^{1/n} = 1$ a.s. Hence the radius of convergence for $\sum_{n=0}^{\infty} A_n z^n$ is 1 a.s.

C2 $A_k \in \mathbb{C}$ are identically distributed r.v. with $\mathbb{E}[|\log |A_0||] < \infty$. **Pritsker, 2014: C2** $\Rightarrow \tau_n \stackrel{w}{\to} \mu_{\mathbb{T}}$ a.s. **Remark: C2** $\Leftrightarrow \lim_{n \to \infty} |A_n|^{1/n} = 1$ a.s.

-

Consider $P_n(z) = \sum_{k=0}^n A_k z^k$ with random coefficients $A_k \in \mathbb{C}$ and zeros Z_k , k = 1, ..., n. Let $\tau_n := \frac{1}{n} \sum_{k=1}^n \delta_{Z_k}$ and $d\mu_{\mathbb{T}}(e^{it}) := dt/(2\pi)$. Question: When $\tau_n \stackrel{\text{w}}{\to} \mu_{\mathbb{T}}$ with probability one (a.s.)?

Selected early results: Hammersley, 1956; Shparo&Shur, 1962; Arnold, 1966; Shepp&Vanderbei, 1995; Ibragimov&Zeitouni, 1997

C1 $A_k \in \mathbb{C}$ are i.i.d. r.v. with $\mathbb{P}(A_0 = 0) < 1$ and $\mathbb{E}[\log^+ |A_0|] < \infty$. **Ibragimov and Zaporozhets, 2013:** $\tau_n \stackrel{w}{\to} \mu_{\mathbb{T}}$ a.s. \Leftrightarrow **C1 Simpler proofs:** Fernández, 2017; Pritsker&Ramachandran, 2017 **Arnold, 1966: C1** \Leftrightarrow lim sup_{n\to\infty} $|A_n|^{1/n} = 1$ a.s. Hence the radius of convergence for $\sum_{n=0}^{\infty} A_n z^n$ is 1 a.s.

C2 $A_k \in \mathbb{C}$ are identically distributed r.v. with $\mathbb{E}[|\log |A_0||] < \infty$. **Pritsker, 2014: C2** $\Rightarrow \tau_n \stackrel{w}{\to} \mu_{\mathbb{T}}$ a.s. **Remark: C2** $\Leftrightarrow \lim_{n \to \infty} |A_n|^{1/n} = 1$ a.s.

イロト イポト イヨト イヨト ニヨー

Consider $P_n(z) = \sum_{k=0}^n A_k z^k$ with random coefficients $A_k \in \mathbb{C}$ and zeros Z_k , k = 1, ..., n. Let $\tau_n := \frac{1}{n} \sum_{k=1}^n \delta_{Z_k}$ and $d\mu_{\mathbb{T}}(e^{it}) := dt/(2\pi)$. Question: When $\tau_n \stackrel{\text{w}}{\to} \mu_{\mathbb{T}}$ with probability one (a.s.)?

Selected early results: Hammersley, 1956; Shparo&Shur, 1962; Arnold, 1966; Shepp&Vanderbei, 1995; Ibragimov&Zeitouni, 1997

C1 $A_k \in \mathbb{C}$ are i.i.d. r.v. with $\mathbb{P}(A_0 = 0) < 1$ and $\mathbb{E}[\log^+ |A_0|] < \infty$.

Ibragimov and Zaporozhets, 2013: $\tau_n \stackrel{\mathsf{W}}{\rightarrow} \mu_{\mathbb{T}}$ a.s. \Leftrightarrow C1

Simpler proofs: Fernández, 2017; Pritsker&Ramachandran, 201[°] **Arnold, 1966:** C1 $\Leftrightarrow \limsup_{n\to\infty} |A_n|^{1/n} = 1$ a.s. Hence the radius of convergence for $\sum_{n=0}^{\infty} A_n z^n$ is 1 a.s.

C2 $A_k \in \mathbb{C}$ are identically distributed r.v. with $\mathbb{E}[|\log |A_0||] < \infty$. **Pritsker, 2014: C2** $\Rightarrow \tau_n \stackrel{w}{\to} \mu_{\mathbb{T}}$ a.s. **Remark: C2** $\Leftrightarrow \lim_{n \to \infty} |A_n|^{1/n} = 1$ a.s.

Consider $P_n(z) = \sum_{k=0}^n A_k z^k$ with random coefficients $A_k \in \mathbb{C}$ and zeros Z_k , k = 1, ..., n. Let $\tau_n := \frac{1}{n} \sum_{k=1}^n \delta_{Z_k}$ and $d\mu_{\mathbb{T}}(e^{it}) := dt/(2\pi)$. Question: When $\tau_n \stackrel{\text{w}}{\to} \mu_{\mathbb{T}}$ with probability one (a.s.)?

Selected early results: Hammersley, 1956; Shparo&Shur, 1962; Arnold, 1966; Shepp&Vanderbei, 1995; Ibragimov&Zeitouni, 1997

C1 $A_k \in \mathbb{C}$ are i.i.d. r.v. with $\mathbb{P}(A_0 = 0) < 1$ and $\mathbb{E}[\log^+ |A_0|] < \infty$.

Ibragimov and Zaporozhets, 2013: $\tau_n \stackrel{\text{w}}{\rightarrow} \mu_{\mathbb{T}}$ a.s. \Leftrightarrow C1 Simpler proofs: Fernández, 2017; Pritsker&Ramachandran, 2017

Arnold, 1966: C1 \Leftrightarrow lim sup $_{n\to\infty} |A_n|^{1/n} = 1$ a.s. Hence the radius of convergence for $\sum_{n=0}^{\infty} A_n z^n$ is 1 a.s.

C2 $A_k \in \mathbb{C}$ are identically distributed r.v. with $\mathbb{E}[|\log |A_0||] < \infty$. **Pritsker, 2014: C2** $\Rightarrow \tau_n \stackrel{w}{\to} \mu_{\mathbb{T}}$ a.s. **Remark: C2** $\Leftrightarrow \lim_{n \to \infty} |A_n|^{1/n} = 1$ a.s.

Consider $P_n(z) = \sum_{k=0}^n A_k z^k$ with random coefficients $A_k \in \mathbb{C}$ and zeros Z_k , k = 1, ..., n. Let $\tau_n := \frac{1}{n} \sum_{k=1}^n \delta_{Z_k}$ and $d\mu_{\mathbb{T}}(e^{it}) := dt/(2\pi)$. Question: When $\tau_n \stackrel{\text{w}}{\to} \mu_{\mathbb{T}}$ with probability one (a.s.)?

Selected early results: Hammersley, 1956; Shparo&Shur, 1962; Arnold, 1966; Shepp&Vanderbei, 1995; Ibragimov&Zeitouni, 1997

C1 $A_k \in \mathbb{C}$ are i.i.d. r.v. with $\mathbb{P}(A_0 = 0) < 1$ and $\mathbb{E}[\log^+ |A_0|] < \infty$.

Ibragimov and Zaporozhets, 2013: $\tau_n \stackrel{\text{W}}{\to} \mu_{\mathbb{T}}$ a.s. \Leftrightarrow C1 **Simpler proofs:** Fernández, 2017; Pritsker&Ramachandran, 2017 **Arnold, 1966:** C1 $\Leftrightarrow \limsup_{n\to\infty} |A_n|^{1/n} = 1$ a.s. Hence the radius of convergence for $\sum_{n=0}^{\infty} A_n z^n$ is 1 a.s.

C2 $A_k \in \mathbb{C}$ are identically distributed r.v. with $\mathbb{E}[|\log |A_0||] < \infty$. **Pritsker, 2014: C2** $\Rightarrow \tau_n \stackrel{w}{\to} \mu_{\mathbb{T}}$ a.s. **Remark: C2** $\Leftrightarrow \lim_{n \to \infty} |A_n|^{1/n} = 1$ a.s.

Consider $P_n(z) = \sum_{k=0}^n A_k z^k$ with random coefficients $A_k \in \mathbb{C}$ and zeros Z_k , k = 1, ..., n. Let $\tau_n := \frac{1}{n} \sum_{k=1}^n \delta_{Z_k}$ and $d\mu_{\mathbb{T}}(e^{it}) := dt/(2\pi)$. Question: When $\tau_n \stackrel{\text{w}}{\to} \mu_{\mathbb{T}}$ with probability one (a.s.)?

Selected early results: Hammersley, 1956; Shparo&Shur, 1962; Arnold, 1966; Shepp&Vanderbei, 1995; Ibragimov&Zeitouni, 1997

C1 $A_k \in \mathbb{C}$ are i.i.d. r.v. with $\mathbb{P}(A_0 = 0) < 1$ and $\mathbb{E}[\log^+ |A_0|] < \infty$.

Ibragimov and Zaporozhets, 2013: $\tau_n \stackrel{W}{\rightarrow} \mu_{\mathbb{T}}$ a.s. \Leftrightarrow C1 **Simpler proofs:** Fernández, 2017; Pritsker&Ramachandran, 2017 **Arnold, 1966:** C1 $\Leftrightarrow \limsup_{n \to \infty} |A_n|^{1/n} = 1$ a.s. Hence the radius of convergence for $\sum_{n=0}^{\infty} A_n z^n$ is 1 a.s.

C2 $A_k \in \mathbb{C}$ are identically distributed r.v. with $\mathbb{E}[|\log |A_0||] < \infty$. Pritsker, 2014: C2 $\Rightarrow \tau_n \stackrel{w}{\to} \mu_{\mathbb{T}}$ a.s.

Consider $P_n(z) = \sum_{k=0}^n A_k z^k$ with random coefficients $A_k \in \mathbb{C}$ and zeros Z_k , k = 1, ..., n. Let $\tau_n := \frac{1}{n} \sum_{k=1}^n \delta_{Z_k}$ and $d\mu_{\mathbb{T}}(e^{it}) := dt/(2\pi)$. Question: When $\tau_n \stackrel{\text{w}}{\to} \mu_{\mathbb{T}}$ with probability one (a.s.)?

Selected early results: Hammersley, 1956; Shparo&Shur, 1962; Arnold, 1966; Shepp&Vanderbei, 1995; Ibragimov&Zeitouni, 1997

C1 $A_k \in \mathbb{C}$ are i.i.d. r.v. with $\mathbb{P}(A_0 = 0) < 1$ and $\mathbb{E}[\log^+ |A_0|] < \infty$.

Ibragimov and Zaporozhets, 2013: $\tau_n \stackrel{W}{\rightarrow} \mu_{\mathbb{T}}$ a.s. \Leftrightarrow C1 **Simpler proofs:** Fernández, 2017; Pritsker&Ramachandran, 2017 **Arnold, 1966:** C1 $\Leftrightarrow \limsup_{n \to \infty} |A_n|^{1/n} = 1$ a.s. Hence the radius of convergence for $\sum_{n=0}^{\infty} A_n z^n$ is 1 a.s.

C2 $A_k \in \mathbb{C}$ are identically distributed r.v. with $\mathbb{E}[|\log |A_0||] < \infty$. Pritsker, 2014: C2 $\Rightarrow \tau_n \stackrel{w}{\rightarrow} \mu_{\mathbb{T}}$ a.s. Remark: C2 $\Leftrightarrow \lim_{n \to \infty} |A_n|^{1/n} = 1$ a.s.

Let $E \subset \mathbb{C}$ be compact, $\operatorname{cap}(E) > 0$, with the equilibrium measure μ_E . Define $\|P_n\|_E := \sup_{z \in E} |P_n(z)|$. Let $B_k(z) = \sum_{j=0}^k b_{j,k} z^j$, where $b_{j,k} \in \mathbb{C}$ and $b_{k,k} \neq 0$ for $k = 0, 1, 2, \ldots$ We assume that

$$\limsup_{k\to\infty} ||B_k||_E^{1/k} \leq 1 \quad \text{and} \quad \lim_{k\to\infty} |b_{k,k}|^{1/k} = 1/\operatorname{cap}(E).$$

These assumptions are satisfied for many orthonormal polynomials and other bases.

Pritsker, 2014-15: Suppose that *E* has empty interior and connected complement. If $\{A_k\}_{k=0}^{\infty}$ satisfy either **C1** or **C2**, then the zero counting measures for $P_n(z) = \sum_{k=0}^{n} A_k B_k(z)$ satisfy $\tau_n \stackrel{\text{w}}{\to} \mu_E$ a.s.

Dauvergne, **2021:** For any compact set $E \subset \mathbb{C}$, cap(E) > 0, we have $\tau_n \stackrel{W}{\to} \mu_E$ a.s. \Leftrightarrow **C1**, where **C1** means $A_k \in \mathbb{C}$ are i.i.d. r.v. with $\mathbb{P}(A_0 = 0) < 1$ and $\mathbb{E}[\log^+ |A_0|] < \infty$.

Required: For any bounded component G of $\mathbb{C} \setminus \partial E$, there is a point $w \in G$ such that

$$\lim_{n\to\infty}|P_n(w)|^{1/n}\geq 1 \quad \text{a.s.}$$

Let $E \subset \mathbb{C}$ be compact, $\operatorname{cap}(E) > 0$, with the equilibrium measure μ_E . Define $\|P_n\|_E := \sup_{z \in E} |P_n(z)|$. Let $B_k(z) = \sum_{j=0}^k b_{j,k} z^j$, where $b_{j,k} \in \mathbb{C}$ and $b_{k,k} \neq 0$ for $k = 0, 1, 2, \ldots$ We assume that

$$\limsup_{k\to\infty} ||B_k||_E^{1/k} \leq 1 \quad \text{and} \quad \lim_{k\to\infty} |b_{k,k}|^{1/k} = 1/\operatorname{cap}(E).$$

These assumptions are satisfied for many orthonormal polynomials and other bases.

Pritsker, 2014-15: Suppose that *E* has empty interior and connected complement. If $\{A_k\}_{k=0}^{\infty}$ satisfy either **C1** or **C2**, then the zero counting measures for $P_n(z) = \sum_{k=0}^n A_k B_k(z)$ satisfy $\tau_n \stackrel{\text{w}}{\to} \mu_E$ a.s.

Dauvergne, **2021:** For any compact set $E \subset \mathbb{C}$, $\operatorname{cap}(E) > 0$, we have $\tau_n \stackrel{W}{\to} \mu_E$ a.s. \Leftrightarrow **C1**, where **C1** means $A_k \in \mathbb{C}$ are i.i.d. r.v. with $\mathbb{P}(A_0 = 0) < 1$ and $\mathbb{E}[\log^+ |A_0|] < \infty$.

Required: For any bounded component G of $\mathbb{C} \setminus \partial E$, there is a point $w \in G$ such that

$$\lim_{n\to\infty}|P_n(w)|^{1/n}\geq 1 \quad \text{a.s.}$$

Let $E \subset \mathbb{C}$ be compact, $\operatorname{cap}(E) > 0$, with the equilibrium measure μ_E . Define $\|P_n\|_E := \sup_{z \in E} |P_n(z)|$. Let $B_k(z) = \sum_{j=0}^k b_{j,k} z^j$, where $b_{j,k} \in \mathbb{C}$ and $b_{k,k} \neq 0$ for $k = 0, 1, 2, \ldots$ We assume that

$$\limsup_{k\to\infty} ||B_k||_E^{1/k} \leq 1 \quad \text{and} \quad \lim_{k\to\infty} |b_{k,k}|^{1/k} = 1/\operatorname{cap}(E).$$

These assumptions are satisfied for many orthonormal polynomials and other bases.

Pritsker, 2014-15: Suppose that *E* has empty interior and connected complement. If $\{A_k\}_{k=0}^{\infty}$ satisfy either **C1** or **C2**, then the zero counting measures for $P_n(z) = \sum_{k=0}^n A_k B_k(z)$ satisfy $\tau_n \stackrel{\text{w}}{\to} \mu_E$ a.s.

Dauvergne, 2021: For any compact set $E \subset \mathbb{C}$, cap(E) > 0, we have $\tau_n \xrightarrow{w} \mu_E$ a.s. \Leftrightarrow C1, where C1 means $A_k \in \mathbb{C}$ are i.i.d. r.v. with $\mathbb{P}(A_0 = 0) < 1$ and $\mathbb{E}[\log^+ |A_0|] < \infty$.

Required: For any bounded component G of $\mathbb{C} \setminus \partial E$, there is a point $w \in G$ such that

 $\lim_{n\to\infty}|P_n(w)|^{1/n}\geq 1 \quad \text{a.s.}$

Let $E \subset \mathbb{C}$ be compact, $\operatorname{cap}(E) > 0$, with the equilibrium measure μ_E . Define $\|P_n\|_E := \sup_{z \in E} |P_n(z)|$. Let $B_k(z) = \sum_{j=0}^k b_{j,k} z^j$, where $b_{j,k} \in \mathbb{C}$ and $b_{k,k} \neq 0$ for $k = 0, 1, 2, \ldots$ We assume that

$$\limsup_{k\to\infty} ||B_k||_E^{1/k} \leq 1 \quad \text{and} \quad \lim_{k\to\infty} |b_{k,k}|^{1/k} = 1/\operatorname{cap}(E).$$

These assumptions are satisfied for many orthonormal polynomials and other bases.

Pritsker, 2014-15: Suppose that *E* has empty interior and connected complement. If $\{A_k\}_{k=0}^{\infty}$ satisfy either **C1** or **C2**, then the zero counting measures for $P_n(z) = \sum_{k=0}^n A_k B_k(z)$ satisfy $\tau_n \stackrel{\text{w}}{\to} \mu_E$ a.s.

Dauvergne, 2021: For any compact set $E \subset \mathbb{C}$, cap(E) > 0, we have $\tau_n \xrightarrow{w} \mu_E$ a.s. \Leftrightarrow C1, where C1 means $A_k \in \mathbb{C}$ are i.i.d. r.v. with $\mathbb{P}(A_0 = 0) < 1$ and $\mathbb{E}[\log^+ |A_0|] < \infty$.

Required: For any bounded component *G* of $\mathbb{C} \setminus \partial E$, there is a point $w \in G$ such that

$$\lim_{n\to\infty}|P_n(w)|^{1/n}\geq 1 \quad \text{a.s.}$$

Example: Random orthogonal polynomials on $[a, b] \subset \mathbb{R}$

Let $E = [a, b] \subset \mathbb{R}$, and let $\{B_k\}_{k=0}^{\infty}$ be orthonormal with respect to a measure ν supported on [a, b] such that $\nu' > 0$ a.e. on [a, b]. Consider the equilibrium measure of [a, b]:

$$d\mu_{[a,b]}(x) = rac{dx}{\pi\sqrt{(x-a)(b-x)}}$$

We have $\tau_n \stackrel{w}{\rightarrow} \mu_{[a,b]}$ a.s. for $P_n(z) = \sum_{k=0}^n A_k B_k(z)$ under either **C1** or **C2**.

Zeros of a random Legendre polynomial with $\mathcal{N}(0, 1)$ coefficients:

Dependent coefficients

Let $B_k(z) = \sum_{j=0}^k b_{j,k} z^j$, where $b_{j,k} \in \mathbb{C}$ and $b_{k,k} \neq 0$ for k = 0, 1, 2, ... Assume that $\limsup_{k \to \infty} ||B_k||_E^{1/k} \le 1 \quad \text{and} \quad \lim_{k \to \infty} |b_{k,k}|^{1/k} = 1/\operatorname{cap}(E).$

C2 $A_k \in \mathbb{C}$ are identically distributed r.v. with $\mathbb{E}[|\log |A_0||] < \infty$.

Pritsker, 2015: Let $E \subset \mathbb{C}$ be compact, cap(E) > 0. If **C2** holds, and there is t > 1 s. t.

$$\sup_{z\in\mathbb{C}} \mathbb{E}\left[(\max(0, -\log|A_0 - z|))^t \right] < \infty, \tag{1}$$

then the zero counting measures of $P_n(z) = \sum_{k=0}^n A_k B_k(z)$ satisfy $\tau_n \stackrel{\text{\tiny W}}{\to} \mu_E$ a.s.

Note: Condition (1) means that the probability measure of A_0 cannot be too concentrated at any point $z \in \mathbb{C}$, and it fails for, e.g., discrete random variables.

Dependent coefficients

Let $B_k(z) = \sum_{j=0}^k b_{j,k} z^j$, where $b_{j,k} \in \mathbb{C}$ and $b_{k,k} \neq 0$ for k = 0, 1, 2, ... Assume that $\limsup_{k \to \infty} ||B_k||_E^{1/k} \leq 1 \quad \text{and} \quad \lim_{k \to \infty} |b_{k,k}|^{1/k} = 1/\operatorname{cap}(E).$

C2 $A_k \in \mathbb{C}$ are identically distributed r.v. with $\mathbb{E}[|\log |A_0||] < \infty$.

Pritsker, 2015: Let $E \subset \mathbb{C}$ be compact, cap(E) > 0. If **C2** holds, and there is t > 1 s. t.

$$\sup_{z\in\mathbb{C}} \mathbb{E}\left[(\max(0, -\log|A_0 - z|))^t \right] < \infty, \tag{1}$$

then the zero counting measures of $P_n(z) = \sum_{k=0}^n A_k B_k(z)$ satisfy $\tau_n \stackrel{\text{w}}{\to} \mu_E$ a.s.

Note: Condition (1) means that the probability measure of A_0 cannot be too concentrated at any point $z \in \mathbb{C}$, and it fails for, e.g., discrete random variables.

Dependent coefficients

Let $B_k(z) = \sum_{j=0}^k b_{j,k} z^j$, where $b_{j,k} \in \mathbb{C}$ and $b_{k,k} \neq 0$ for k = 0, 1, 2, ... Assume that $\limsup_{k \to \infty} ||B_k||_E^{1/k} \leq 1 \quad \text{and} \quad \lim_{k \to \infty} |b_{k,k}|^{1/k} = 1/\operatorname{cap}(E).$

C2 $A_k \in \mathbb{C}$ are identically distributed r.v. with $\mathbb{E}[|\log |A_0||] < \infty$.

Pritsker, 2015: Let $E \subset \mathbb{C}$ be compact, cap(E) > 0. If **C2** holds, and there is t > 1 s. t.

$$\sup_{z\in\mathbb{C}} \mathbb{E}\left[(\max(0, -\log |A_0 - z|))^t \right] < \infty, \tag{1}$$

then the zero counting measures of $P_n(z) = \sum_{k=0}^n A_k B_k(z)$ satisfy $\tau_n \stackrel{\text{w}}{\to} \mu_E$ a.s.

Note: Condition (1) means that the probability measure of A_0 cannot be too concentrated at any point $z \in \mathbb{C}$, and it fails for, e.g., discrete random variables.

Let $G \in \mathbb{C}$ be a bounded open set, and let ν be a finite Borel measure supported on G. There is a unique *balayage* measure $\hat{\nu}$ supported on ∂G , of the same mass as ν , such that

$$\int \log |z-t|\,d
u(t) = \int \log |z-t|\,d\hat{
u}(t) \quad ext{for all } z\in\mathbb{C}\setminus\overline{G}.$$

If δ_w is the Dirac measure at $w \in G$, then $\widehat{\delta_w} = \omega(w, G)$ is the harmonic measure of G at w.

Given a compact set $E \in \mathbb{C}$, consider the unbounded component Ω of its complement $\mathbb{C} \setminus E$ and set $G := \mathbb{C} \setminus \overline{\Omega}$. For a zero counting measure τ_n , define its balayage out of G by

$$\widetilde{\tau_n} := \tau_n|_{\mathbb{C}\backslash G} + \widehat{\tau_n|_G} = \frac{1}{n} \left(\sum_{z_k \in \mathbb{C}\backslash G} \delta_{z_k} + \sum_{z_k \in G} \omega(z_k, G) \right),$$

where $\{z_k\}_{k=1}^n$ are the roots of of $P_n(z) = \sum_{k=0}^n A_k B_k(z)$.

Let $G \in \mathbb{C}$ be a bounded open set, and let ν be a finite Borel measure supported on G. There is a unique *balayage* measure $\hat{\nu}$ supported on ∂G , of the same mass as ν , such that

$$\int \log |z-t|\,d
u(t) = \int \log |z-t|\,d\hat{
u}(t) \quad ext{for all } z\in\mathbb{C}\setminus\overline{G}.$$

If δ_w is the Dirac measure at $w \in G$, then $\widehat{\delta_w} = \omega(w, G)$ is the harmonic measure of G at w.

Given a compact set $E \in \mathbb{C}$, consider the unbounded component Ω of its complement $\mathbb{C} \setminus E$ and set $G := \mathbb{C} \setminus \overline{\Omega}$. For a zero counting measure τ_n , define its balayage out of G by

$$\widetilde{\tau_n} := \tau_n|_{\mathbb{C}\backslash G} + \widehat{\tau_n|_G} = \frac{1}{n} \left(\sum_{z_k \in \mathbb{C}\backslash G} \delta_{z_k} + \sum_{z_k \in G} \omega(z_k, G) \right),$$

where $\{z_k\}_{k=1}^n$ are the roots of of $P_n(z) = \sum_{k=0}^n A_k B_k(z)$.

Let $G \in \mathbb{C}$ be a bounded open set, and let ν be a finite Borel measure supported on G. There is a unique *balayage* measure $\hat{\nu}$ supported on ∂G , of the same mass as ν , such that

$$\int \log |z-t|\,d
u(t) = \int \log |z-t|\,d\hat{
u}(t) \quad ext{for all } z\in\mathbb{C}\setminus\overline{G}.$$

If δ_w is the Dirac measure at $w \in G$, then $\widehat{\delta_w} = \omega(w, G)$ is the harmonic measure of G at w.

Given a compact set $E \in \mathbb{C}$, consider the unbounded component Ω of its complement $\mathbb{C} \setminus E$ and set $G := \mathbb{C} \setminus \overline{\Omega}$. For a zero counting measure τ_n , define its balayage out of G by

$$\widetilde{\tau_n} := \tau_n|_{\mathbb{C}\setminus G} + \widehat{\tau_n}|_G = \frac{1}{n} \left(\sum_{z_k \in \mathbb{C}\setminus G} \delta_{z_k} + \sum_{z_k \in G} \omega(z_k, G) \right),$$

where $\{z_k\}_{k=1}^n$ are the roots of of $P_n(z) = \sum_{k=0}^n A_k B_k(z)$.

Let $G \in \mathbb{C}$ be a bounded open set, and let ν be a finite Borel measure supported on G. There is a unique *balayage* measure $\hat{\nu}$ supported on ∂G , of the same mass as ν , such that

$$\int \log |z-t|\,d
u(t) = \int \log |z-t|\,d\hat{
u}(t) \quad ext{for all } z\in\mathbb{C}\setminus\overline{G}.$$

If δ_w is the Dirac measure at $w \in G$, then $\widehat{\delta_w} = \omega(w, G)$ is the harmonic measure of G at w.

Given a compact set $E \in \mathbb{C}$, consider the unbounded component Ω of its complement $\mathbb{C} \setminus E$ and set $G := \mathbb{C} \setminus \overline{\Omega}$. For a zero counting measure τ_n , define its balayage out of G by

$$\widetilde{\tau_n} := \tau_n|_{\mathbb{C}\setminus G} + \widehat{\tau_n|_G} = \frac{1}{n} \left(\sum_{z_k \in \mathbb{C}\setminus G} \delta_{z_k} + \sum_{z_k \in G} \omega(z_k, G) \right),$$

where $\{z_k\}_{k=1}^n$ are the roots of of $P_n(z) = \sum_{k=0}^n A_k B_k(z)$.

Let $G \in \mathbb{C}$ be a bounded open set, and let ν be a finite Borel measure supported on G. There is a unique *balayage* measure $\hat{\nu}$ supported on ∂G , of the same mass as ν , such that

$$\int \log |z-t|\,d
u(t) = \int \log |z-t|\,d\hat{
u}(t) \quad ext{for all } z\in\mathbb{C}\setminus\overline{G}.$$

If δ_w is the Dirac measure at $w \in G$, then $\widehat{\delta_w} = \omega(w, G)$ is the harmonic measure of G at w.

Given a compact set $E \in \mathbb{C}$, consider the unbounded component Ω of its complement $\mathbb{C} \setminus E$ and set $G := \mathbb{C} \setminus \overline{\Omega}$. For a zero counting measure τ_n , define its balayage out of G by

$$\widetilde{\tau_n} := \tau_n|_{\mathbb{C}\setminus G} + \widehat{\tau_n|_G} = \frac{1}{n} \left(\sum_{z_k \in \mathbb{C}\setminus G} \delta_{z_k} + \sum_{z_k \in G} \omega(z_k, G) \right),$$

where $\{z_k\}_{k=1}^n$ are the roots of of $P_n(z) = \sum_{k=0}^n A_k B_k(z)$.

Let $A_r(\alpha, \beta) = \{z : r < |z| < 1/r, \ \alpha \leq \arg z < \beta\}, \ 0 < r < 1.$

Pritsker, 2014: If $\{A_k\}_{k=0}^n$ satisfy $\mathbb{E}[|A_k|^t] \leq c$, k = 0, ..., n, for fixed c, t > 0, and $\mathbb{E}[\log |A_0|] > -\infty$, $\mathbb{E}[\log |A_n|] > -\infty$, then

$$\mathbb{E}\left[\left|\tau_n(A_r(\alpha,\beta))-\frac{\beta-\alpha}{2\pi}\right|\right]\leq C\sqrt{\frac{\log n}{n}}.$$

Equivalently, $\mathbb{E}[N_n(A_r(\alpha,\beta))] = \frac{\beta-\alpha}{2\pi}n + O\left(\sqrt{n\log n}\right).$

If $E \subset \mathbb{C}$ satisfies dist $(E, \mathbb{T}) > 0$, then $\mathbb{E}[N_n(E)] = O(\log n)$.

Theorem If $\{A_k\}_{k=0}^n$ satisfy $\mathbb{E}[|A_k|^t] \le c, \ k = 0, ..., n$, for fixed c, t > 0, and $\mathbb{E}[\log |A_n|] > -\infty$, then

$$\mathbb{E}\left[\left|\widetilde{\tau_n}(A_r(\alpha,\beta))-\frac{\beta-\alpha}{2\pi}\right|\right] \leq C\sqrt{\frac{\log n}{n}}.$$

イロト イポト イヨト イヨト ニヨー

Let $A_r(\alpha, \beta) = \{ z : r < |z| < 1/r, \ \alpha \le \arg z < \beta \}, \ 0 < r < 1.$

Pritsker, 2014: If $\{A_k\}_{k=0}^n$ satisfy $\mathbb{E}[|A_k|^t] \leq c$, k = 0, ..., n, for fixed c, t > 0, and $\mathbb{E}[\log |A_0|] > -\infty$, $\mathbb{E}[\log |A_n|] > -\infty$, then

$$\mathbb{E}\left[\left|\tau_n(A_r(\alpha,\beta))-\frac{\beta-\alpha}{2\pi}\right|\right]\leq C\sqrt{\frac{\log n}{n}}.$$

Equivalently, $\mathbb{E}[N_n(A_r(\alpha,\beta))] = \frac{\beta-\alpha}{2\pi}n + O\left(\sqrt{n\log n}\right).$

If $E \subset \mathbb{C}$ satisfies dist $(E, \mathbb{T}) > 0$, then $\mathbb{E}[N_n(E)] = O(\log n)$.

Theorem If $\{A_k\}_{k=0}^n$ satisfy $\mathbb{E}[|A_k|^t] \leq c, \ k = 0, ..., n$, for fixed c, t > 0, and $\mathbb{E}[\log |A_n|] > -\infty$, then

$$\mathbb{E}\left[\left|\widetilde{\tau_n}(A_r(\alpha,\beta))-\frac{\beta-\alpha}{2\pi}\right|\right] \leq C\sqrt{\frac{\log n}{n}}.$$

イロト イポト イヨト イヨト ニヨー

Let $A_r(\alpha, \beta) = \{ z : r < |z| < 1/r, \ \alpha \le \arg z < \beta \}, \ 0 < r < 1.$

Pritsker, 2014: If $\{A_k\}_{k=0}^n$ satisfy $\mathbb{E}[|A_k|^t] \leq c$, k = 0, ..., n, for fixed c, t > 0, and $\mathbb{E}[\log |A_0|] > -\infty$, $\mathbb{E}[\log |A_n|] > -\infty$, then

$$\mathbb{E}\left[\left|\tau_n(A_r(\alpha,\beta))-\frac{\beta-\alpha}{2\pi}\right|\right]\leq C\sqrt{\frac{\log n}{n}}.$$

Equivalently,
$$\mathbb{E}[N_n(A_r(\alpha,\beta))] = \frac{\beta-\alpha}{2\pi}n + O\left(\sqrt{n\log n}\right)$$
.

If $E \subset \mathbb{C}$ satisfies dist $(E, \mathbb{T}) > 0$, then $\mathbb{E}[N_n(E)] = O(\log n)$.

Theorem If $\{A_k\}_{k=0}^n$ satisfy $\mathbb{E}[|A_k|^t] \le c, \ k = 0, ..., n$, for fixed c, t > 0, and $\mathbb{E}[\log |A_n|] > -\infty$, then

$$\mathbb{E}\left[\left|\widetilde{\tau_n}(A_r(\alpha,\beta))-\frac{\beta-\alpha}{2\pi}\right|\right] \leq C\sqrt{\frac{\log n}{n}}.$$

Let $A_r(\alpha, \beta) = \{ z : r < |z| < 1/r, \ \alpha \le \arg z < \beta \}, \ 0 < r < 1.$

Pritsker, 2014: If $\{A_k\}_{k=0}^n$ satisfy $\mathbb{E}[|A_k|^t] \leq c$, k = 0, ..., n, for fixed c, t > 0, and $\mathbb{E}[\log |A_0|] > -\infty$, $\mathbb{E}[\log |A_n|] > -\infty$, then

$$\mathbb{E}\left[\left|\tau_n(A_r(\alpha,\beta))-\frac{\beta-\alpha}{2\pi}\right|\right]\leq C\sqrt{\frac{\log n}{n}}.$$

Equivalently,
$$\mathbb{E}[N_n(A_r(\alpha,\beta))] = \frac{\beta-\alpha}{2\pi}n + O\left(\sqrt{n\log n}\right).$$

If $E \subset \mathbb{C}$ satisfies dist $(E, \mathbb{T}) > 0$, then $\mathbb{E}[N_n(E)] = O(\log n)$.

Theorem If $\{A_k\}_{k=0}^n$ satisfy $\mathbb{E}[|A_k|^t] \le c, \ k = 0, ..., n$, for fixed c, t > 0, and $\mathbb{E}[\log |A_n|] > -\infty$, then

$$\mathbb{E}\left[\left|\widetilde{\tau_n}(A_r(\alpha,\beta)) - \frac{\beta - \alpha}{2\pi}\right|\right] \leq C\sqrt{\frac{\log n}{n}}.$$

Let $A_r(\alpha, \beta) = \{ z : r < |z| < 1/r, \ \alpha \le \arg z < \beta \}, \ 0 < r < 1.$

Pritsker, 2014: If $\{A_k\}_{k=0}^n$ satisfy $\mathbb{E}[|A_k|^t] \leq c$, k = 0, ..., n, for fixed c, t > 0, and $\mathbb{E}[\log |A_0|] > -\infty$, $\mathbb{E}[\log |A_n|] > -\infty$, then

$$\mathbb{E}\left[\left|\tau_n(A_r(\alpha,\beta))-\frac{\beta-\alpha}{2\pi}\right|\right]\leq C\sqrt{\frac{\log n}{n}}.$$

Equivalently, $\mathbb{E}[N_n(A_r(\alpha,\beta))] = \frac{\beta-\alpha}{2\pi}n + O\left(\sqrt{n\log n}\right).$

If $E \subset \mathbb{C}$ satisfies dist $(E, \mathbb{T}) > 0$, then $\mathbb{E}[N_n(E)] = O(\log n)$.

Theorem If $\{A_k\}_{k=0}^n$ satisfy $\mathbb{E}[|A_k|^t] \leq c, \ k = 0, ..., n$, for fixed c, t > 0, and $\mathbb{E}[\log |A_n|] > -\infty$, then

$$\mathbb{E}\left[\left|\widetilde{\tau_n}(\boldsymbol{A_r}(\alpha,\beta))-\frac{\beta-\alpha}{2\pi}\right|\right] \leq C\sqrt{\frac{\log n}{n}}.$$

Igor E. Pritsker Uniform distribution for zeros of random polynomials

Consider lacunary polynomials $L_n(z) = \sum_{k=0}^n A_k z^{r_k}$, where $\{r_k\}_{k=0}^{\infty} \subset \mathbb{N}$ are increasing and $\{A_n\}_{n=0}^{\infty} \subset \mathbb{C}$ are random variables.

Pritsker, **2018**: Let a > 0 and $p \ge 1$. Suppose either $\{A_n\}_{n=0}^{\infty}$ are non-trivial i.i.d. random variables satisfying $\mathbb{E}[(\log^+ |A_n|)^{1/p}] < \infty$, or $\{A_n\}_{n=0}^{\infty}$ are identically distributed and $\mathbb{E}[|\log |A_n||^{1/p}] < \infty$. If $r_n \sim an^p$ then $\tau_n \stackrel{W}{\to} \mu_{\mathbb{T}}$ almost surely.

Assume that $\liminf_{n\to\infty} r_n^{1/n} > 1$. If $\{A_n\}_{n=0}^{\infty} \subset \mathbb{C}$ are identically distributed and $\mathbb{E}[\log^+ |\log |A_n||] < \infty$, then $\tau_n \stackrel{\text{w}}{\to} \mu_{\mathbb{T}}$ almost surely.

Let $\{A_n\}_{n=0}^{\infty}$ be identically distributed with $\mathbb{E}[|A_n|^t] < \infty$ for a fixed $t \in (0, 1]$, and $\mathbb{E}[\log |A_n|] > -\infty$. If $\liminf_{n \to \infty} r_n^{1/n} = q > 1$ then

$$\limsup_{n\to\infty} \left| \tau_n(A_r(\alpha,\beta)) - \frac{\beta-\alpha}{2\pi} \right|^{1/n} \leq \frac{1}{\sqrt{q}} \quad \text{a.s.}$$

Consider lacunary polynomials $L_n(z) = \sum_{k=0}^n A_k z^{r_k}$, where $\{r_k\}_{k=0}^{\infty} \subset \mathbb{N}$ are increasing and $\{A_n\}_{n=0}^{\infty} \subset \mathbb{C}$ are random variables.

Pritsker, 2018: Let a > 0 and $p \ge 1$. Suppose either $\{A_n\}_{n=0}^{\infty}$ are non-trivial i.i.d. random variables satisfying $\mathbb{E}[(\log^+ |A_n|)^{1/p}] < \infty$, or $\{A_n\}_{n=0}^{\infty}$ are identically distributed and $\mathbb{E}[|\log |A_n||^{1/p}] < \infty$. If $r_n \sim an^p$ then $\tau_n \stackrel{\text{w}}{\to} \mu_{\mathbb{T}}$ almost surely.

Assume that $\liminf_{n\to\infty} r_n^{1/n} > 1$. If $\{A_n\}_{n=0}^{\infty} \subset \mathbb{C}$ are identically distributed and $\mathbb{E}[\log^+ |\log |A_n||] < \infty$, then $\tau_n \stackrel{w}{\to} \mu_{\mathbb{T}}$ almost surely.

Let $\{A_n\}_{n=0}^{\infty}$ be identically distributed with $\mathbb{E}[|A_n|^t] < \infty$ for a fixed $t \in (0, 1]$, and $\mathbb{E}[\log |A_n|] > -\infty$. If $\liminf_{n \to \infty} r_n^{1/n} = q > 1$ then

$$\limsup_{n\to\infty} \left| \tau_n(A_r(\alpha,\beta)) - \frac{\beta-\alpha}{2\pi} \right|^{1/n} \leq \frac{1}{\sqrt{q}} \quad \text{a.s.}$$

Consider lacunary polynomials $L_n(z) = \sum_{k=0}^n A_k z^{r_k}$, where $\{r_k\}_{k=0}^{\infty} \subset \mathbb{N}$ are increasing and $\{A_n\}_{n=0}^{\infty} \subset \mathbb{C}$ are random variables.

Pritsker, 2018: Let a > 0 and $p \ge 1$. Suppose either $\{A_n\}_{n=0}^{\infty}$ are non-trivial i.i.d. random variables satisfying $\mathbb{E}[(\log^+ |A_n|)^{1/p}] < \infty$, or $\{A_n\}_{n=0}^{\infty}$ are identically distributed and $\mathbb{E}[|\log |A_n||^{1/p}] < \infty$. If $r_n \sim an^p$ then $\tau_n \stackrel{W}{\to} \mu_{\mathbb{T}}$ almost surely.

Assume that $\liminf_{n\to\infty} r_n^{1/n} > 1$. If $\{A_n\}_{n=0}^{\infty} \subset \mathbb{C}$ are identically distributed and $\mathbb{E}[\log^+ |\log |A_n||] < \infty$, then $\tau_n \stackrel{\mathsf{w}}{\to} \mu_{\mathbb{T}}$ almost surely.

Let $\{A_n\}_{n=0}^{\infty}$ be identically distributed with $\mathbb{E}[|A_n|^t] < \infty$ for a fixed $t \in (0, 1]$, and $\mathbb{E}[\log |A_n|] > -\infty$. If $\liminf_{n \to \infty} r_n^{1/n} = q > 1$ then

$$\limsup_{n \to \infty} \left| au_n(A_r(lpha,eta)) - rac{eta - lpha}{2\pi}
ight|^{1/n} \leq rac{1}{\sqrt{q}} \quad ext{a.s.}$$

Consider lacunary polynomials $L_n(z) = \sum_{k=0}^n A_k z^{r_k}$, where $\{r_k\}_{k=0}^{\infty} \subset \mathbb{N}$ are increasing and $\{A_n\}_{n=0}^{\infty} \subset \mathbb{C}$ are random variables.

Pritsker, 2018: Let a > 0 and $p \ge 1$. Suppose either $\{A_n\}_{n=0}^{\infty}$ are non-trivial i.i.d. random variables satisfying $\mathbb{E}[(\log^+ |A_n|)^{1/p}] < \infty$, or $\{A_n\}_{n=0}^{\infty}$ are identically distributed and $\mathbb{E}[|\log |A_n||^{1/p}] < \infty$. If $r_n \sim an^p$ then $\tau_n \stackrel{\text{w}}{\to} \mu_{\mathbb{T}}$ almost surely.

Assume that $\liminf_{n\to\infty} r_n^{1/n} > 1$. If $\{A_n\}_{n=0}^{\infty} \subset \mathbb{C}$ are identically distributed and $\mathbb{E}[\log^+ |\log |A_n||] < \infty$, then $\tau_n \stackrel{\mathsf{w}}{\to} \mu_{\mathbb{T}}$ almost surely.

Let $\{A_n\}_{n=0}^{\infty}$ be identically distributed with $\mathbb{E}[|A_n|^t] < \infty$ for a fixed $t \in (0, 1]$, and $\mathbb{E}[\log |A_n|] > -\infty$. If $\liminf_{n \to \infty} r_n^{1/n} = q > 1$ then

$$\limsup_{n\to\infty} \left| \tau_n(\boldsymbol{A}_r(\alpha,\beta)) - \frac{\beta-\alpha}{2\pi} \right|^{1/n} \leq \frac{1}{\sqrt{q}} \quad \text{a.s.}$$