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Overview
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KS equation

» Models chemotaxis: directed movement of a cell population
guided by chemical stimuli (Keller-Segel '70).

» Cell density p; > 0, concentration of the chemical ¢; > 0 at
t>0.
Oip(x) = Api(z) — XV - (pe(2)Ver(z)), t> 0,7 € R?,

00,c(7) = Acy(z) — Aeg(z) + pe(x), t> 0,7 € R?,

£0, €o-
(1)
» Parameters:
- x > 0: chemotactic sensitivity,
- 6 > 0: ratio between the diffusion time scales of cells and
chemical,
- XA > 0: death rate of the chemo-attractant,
- [ po(dz) =1 total mass of cells rescaled.

» 0 = 0: parabolic-elliptic case, § > 0 doubly parabolic.
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Finite Time Blow Up VS Global Well-Posedness in R?

» FTBU: A point cluster emerges due to mutual cell attraction
(some norm explodes in FT).

» Well known for parabolic-elliptic case:
- x < 8m: GWP,
-y > 87 FTBU,
- x=8m BUast — oc.
(See e.g. Perthame survey '05)
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Finite Time Blow Up VS Global Well-Posedness in R?

» FTBU: A point cluster emerges due to mutual cell attraction
(some norm explodes in FT).

» Well known for parabolic-elliptic case:
- x < 8m: GWP,
-y > 87 FTBU,
- x=8m BUast— oo.
(See e.g. Perthame survey '05)

» Doubly parabolic:
- x < 8m: GWP (Calvez-Corrias '08) ,
- ¢g =0, GW for any x > 0 when 0 is large enough
(Biler-Guerra-Karch '15, extension Corrias-Escobedo-Matos '14)
- FTBU open, only result for y > 8 radial solution on a disk.
(Herrero-Velasquez '97) and recently (Mizoguchi '21).

Our goal: derive the system (1) as a mean-field limit of an
Interacting particle system.
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Mean field limit

Typical particle when N = oo with a 2 step approach:

1. Follows the potential ¢:
dX; = V2dW; + xVer(Xy)dt.

Denote p; := L(X), for t > 0.

5/21



Mean field limit

Typical particle when N = oo with a 2 step approach:

1. Follows the potential ¢:
dXt \/>th + XVCt (Xt)d

Denote p; := L(X), for t > 0.

2. Feynman-Kac for ¢ with p as source term:

() = B () + /0 (K % o) ()ds,

where we denoted, for (¢,z) € (0,00) x R?,

0
gtg(x) : ﬂ€ 4t|x‘2

c /\
BN () = e 7 (gf % o) ().

K[ ) = 5e 0] (),
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Mean field limit

Putting everything together,

X¢ = Xo + V2Wi + x [y VOO X )ds + x fo [ (VKSR % p,)(X,)duds,
ps = Law(Xy),s > 0.

6/21



Mean field limit

Putting everything together,

X¢ = Xo + V2Wi + x [y VOO X )ds + x fo [ (VKSR % p,)(X,)duds,
ps = Law(Xy),s > 0.

Notice
1. Past laws dependence,
2. Singular interaction in VK.
(well posedness with L? spaces (T. '20) in R?)
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Particle system

For N > 2 it reads

XN = xpN + ﬂwg + X / Vb A (s, X0N)ds

GA

2 duds.
—1
J#
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Particle system

For N > 2 it reads

XN = xpN + ﬂwg + X / Vb A (s, X0N)ds

GA

1 2 duds.
J#
Notice
1. Non-Markovian system!
2. Singular interaction
VKQ’)‘(J:):— b e~ ot mloly
t 8mt? '
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Why singular?

LN _ th,N

Suppose X, at some time ¢ > 0.
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Why singular?

Suppose th’N = th’N

We expect

at some time t > 0.

N N
XN = XEV = XN = XEN = (- 9

for some a € (0,1).
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Why singular?

Suppose th’N = th’N

We expect

at some time t > 0.

N N
XN = XEV = XN = XEN = (- 9

for some a € (0,1).
Interaction in the drift of X5V of order

t t o §
/ VKA (XN - X2N)|ds ~ / ((’i—s))f@ay sy,
0 0 — S

This diverges iff « > 1/2.
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Why singular?

Suppose th’N = XE’N

We expect

at some time t > 0.

N N
XN = XEV = XN = XEN = (- 9

for some a € (0,1).
Interaction in the drift of X5V of order

/ VRO (XM X2V ds ~ / 29 e g,
0 o (t—s)?

This diverges iff « > 1/2.

As we precisely expect the paths to be Holder(3)~ (as BM), it is

not clear whether the drift is well-defined or not, and we are really
around the critical exponent.
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How singular?

Roughly speaking, if for some R € R? we have

XN =X2N 4R, selt—1,14

then the corresponding interaction (in the drift of X1V) looks like,

e.g. when A =0,
t t
OR 1 8
VKA (XIN - x2Nyds = 2= [ e a0 g,
i1 8m Ji_1 (t— )
_ R 6_% |R|0 R
- 27m|R? 27| R|?

(Of course, this is an exaggerated situation.)
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Related works

» Doubly parabolic case

- in 1d: VK}!4(x) ~ ﬁ%e’%.
Propagation of chaos in Jabir-Talay-T. ('18) using Girsanov
transforms (impossible here as particles should collide, higher
dimension — more singularity).

- in any d: two particle system with mollified interaction by
Stevens ('01).
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Related works

» Doubly parabolic case

- in 1d: VK}!4(x) ~ ﬁ%e’%.
Propagation of chaos in Jabir-Talay-T. ('18) using Girsanov
transforms (impossible here as particles should collide, higher
dimension — more singularity).

- in any d: two particle system with mollified interaction by
Stevens ('01).

» Parabolic-elliptic case in 2d:
dX} = V2dW} + VK(Xt X}t

where VK (z) = —ﬁ.
Well posedness and convergence along subsequences x < 27
in Fournier-Jourdain ('17) , x < 87 Tardy ('21).

» Navier Stokes vortex 2d: VK = % Osada('85,'87)

Fournier-Hauray-Mischler('14).
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Main result

We set /¥ := 4 LV, (5(XZ-N) € P(C([0,x),R?)) a.s. and, for
each t > 0, ¥ = NZZ L XzN € P(R?) as.

Theorem

Let x >0, A >0 and § > 0. Consider pg € P(R?) and some
nonnegative co € LP(R?), for some p > 2. Consider, for each
N > 2, some exchangeable initial condition (XS’N )i=1,..N-
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Main result

We set /¥ := 4 LV, (5(X¢N) € P(C([0,x),R?)) a.s. and, for
each t > 0, ¥ = NZZ L XzN € P(R?) as.

Theorem

Let x >0, A >0 and 6 > 0. Consider pg € ’P(Rz) and some
nonnegative co € LP(R?), for some p > 2. Consider, for each
N > 2, some exchangeable initial condition (XS’N )i=1,..N-
There exists Xpp > 0 such that if x < X5,pr then, we have

(i) For each N > 2, there exists an exchangeable N-Keller-Segel
particle system.

(ii) If pdY 5 po as N — oo, then the family (u™¥) N> is tight in
P(C([0,00),R?)) and any limit point i of (u’¥)n>2 solves the
MP related to the meanfield SDE with initial law pg.
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About the threshold

The particular form is quite complicated (but explicit), here are
some numerical explorations:

© Xp—q = 1.39,

* —
* Xp=0.00001 = 3-28,
x 0200 165

X ~ N

(The last point is troubling, as at least when ¢y = 0 one can find
for any x a 6 such that the limit is well posed.)

12/21



Some comments

» The only information about the limit for all ¢ > 0,

/ / / (K2 (2—y)+| VK (2—y)]) pu (dy)dup, (dz)ds < oo,
R? R2

— very weak, measure valued solution to (KS) (slightly
different then the ones in Biler et al and Corrias et al).
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Some comments

» The only information about the limit for all ¢ > 0,

/ /ﬂp/ /R2 (K% (2—y)+| VK" (=) |) pu (dy)dups (dz)ds < oo,

— very weak, measure valued solution to (KS) (slightly
different then the ones in Biler et al and Corrias et al).

» Difficult to show uniqueness to (KS) of such solutions (or
propagation of regularity) — not a propagation of chaos

result (does not coincide with the MP in more regular spaces,
see T. (2020)).

» First result of this kind (non-smooth PS) for the doubly
parabolic (KS).
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Some comments

» The only information about the limit for all ¢ > 0,

/ / / (KO (1= )+ VKO, (2—9)]) pu(dy)dups (d)ds < oo,
R2 R2

— very weak, measure valued solution to (KS) (slightly
different then the ones in Biler et al and Corrias et al).

» Difficult to show uniqueness to (KS) of such solutions (or
propagation of regularity) — not a propagation of chaos
result (does not coincide with the MP in more regular spaces,
see T. (2020)).

» First result of this kind (non-smooth PS) for the doubly
parabolic (KS).

» Threshold small, but not too bad when 6 small or of order 1.

» Initial condition only exchangeable particles (can be a dirac);
initial concentration ¢y only in L2 (R2)
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Strategy (0 = 1,A =0,¢y = 0)

B

» Remember that VK;(z) = Vg (z) ~ —t%efo.

» Control a priori the 2-by-2 interaction. Set
S
DL2N .— / VK, o(XPV — X2N)du,
0
we prove there exists v € (2,2) s.t.

t
sup ]E[/ |D;’2’N|2(7_1)d3} < 00 for all t > 0.
N>2 LJo

Then, you can do this on a e-regularised PS and get tightness,

pass to the limit....

14 /21



Key idea

» We want to perform a "Markovianizartion" of the interaction.

Informally
1

N
‘Dtm’ | ~ LN 2N
X, = X
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Key idea

» We want to perform a "Markovianizartion" of the interaction.

Informally
1

~ LN 2N
X, = X

> Rigorously, we will prove that for x small,

1,2,N
|Dy™

t t
E[/ \D;’27N]2(7_1)ds} < CE[/ b —X,?vN\—2<7—1>ds]
0 0

We bound the path dependent interaction by a current time
dependent one.
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Now, as the interaction is of order ﬁ we apply the idea of Osada
and Fournier-Jourdain to treat it.

For a € (0,1) applying Ito and using exchangeability :

N
d @ a— X a— NI
£E|th - X7 > CoEIX] — X7|*7% = NCaZ]EHth — X271 D|
=2

Using Holder, exchangeability and the Markovianization
d _
EEHE|)(3 - )(3|a > (Co — (7)((7a)ﬂz|)(g - )(E|a 2

Choose o =4 — 2y € (0,1), suppose x small and rearrange

E|X} — X207 < 4.
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3 ingredients

> A suitable Itdé formula for the path dependent interaction,
> Apply it to a convenient function,

> A key functional inequality.
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Time-space Itd

Denote Rt’j = X — X!

Let F: R, x R? = R be of class C} (R x R?). Forall t > 0,

IE[/OtF(ts,Rtlf)ds} _E[/t F(0, RV 2)d}

// (9,F + AF)( u—sRm)dsdu}

%1 ZE[/O (/Ou VEF(u— s,R;ﬁ)d.s> : D}L’jdu]
=2

(Ito between s and t on X! with X2 fixed + integrate in s +
Fubbini.)
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A good F

Notice that

C
V()| < —2—.
(t + Blz[?)2
Choose 5
Flta) =+ 8?7, v e (5,2).
So that

(O, F + AF)(t,x) > Cg(t + Blz*)™7, for B small,

and )
VF| < Ot + Blaf2)3 .
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Key functional inequality

Let b > a > 0 and ¢t > 0. For any measurable function
f:]0,t] = Ry, we have

. 1 ¢ 1 5
Iy st < e | )

where

a+1[ b }%'

k(a,b) = "

(The constant «(a,b) is optimal (for any value of ¢ > 0), as one
can show by choosing f(s) = (¢ — s)1 and by letting ¢ — 0. )
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Board... 4+ Confll
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