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1. Motivation: Number 

variance of Laplace 

spectrum of compact 

surfaces



Spectrum of surfaces

 Goal: Understand eigenvalue statistics of Laplacian on 

(random) surfaces. 

 Today: Number variance (smooth statistics)

 (Ω,g) – Smooth closed surface (compact, no boundary)

 Δ = 𝑑𝑖𝑣 ∘ 𝑔𝑟𝑎𝑑 Laplacian (Laplace-Beltrami) on Ω

 Spectrum of −Δ (“spectrum of Ω”) – purely discrete

𝜆𝑗 𝑗≥1
:           Δ𝜑𝑗 + 𝜆𝑗 ∙ 𝜑𝑗 = 0

 Weyl’s law: 𝑁 𝜆 ≔ # 𝑗: 𝜆𝑗 ≤ 𝜆 ~
𝐴𝑟𝑒𝑎(Ω)

4𝜋
∙ 𝜆



Number variance

 Weyl’s law:𝑁 𝜆 = 𝑁Ω 𝜆 ≔ # 𝑗: 𝜆𝑗 ≤ 𝜆 ~
𝐴𝑟𝑒𝑎(Ω)

4𝜋
∙ 𝜆

 ⟹ For 𝐿 > 0, “random” interval 

length 𝐿 ≔
4𝜋

𝐴𝑟𝑒𝑎(Ω)
∙ 𝐿 expect 𝐿 eigenvalues 

 Take intervals 𝑥, 𝑥 + 𝐿 ,    𝑥 ∈ 𝐸, 2𝐸 random uniform

 𝑛 𝐿; 𝑥 ≔ 𝑁 𝑥 + 𝐿 − 𝑁(𝑥) (“expectation” 𝐿)

 Number variance 

Σ2 𝐿; 𝐸 ≔
1

𝐸
𝐸
2𝐸

𝑛 𝐿; 𝑥 − 𝐿 2𝑑𝑥



Number variance (smooth)

 Number variance 

Σ2 𝐿; 𝐸 ≔
1

𝐸
𝐸
2𝐸

𝑛 𝐿; 𝑥 − 𝐿 2𝑑𝑥

 Smooth statistics: 𝑓:ℝ → ℝ smooth & rapidly 

decaying (e.g. compact support), unit mass

𝑛𝑓 𝐿; 𝑥 ≔

𝑗

𝑓
𝜆𝑗 − 𝑥

𝐿

 (Smooth) number variance

Σ𝑓
2 𝐿; 𝐸 ≔

1

𝐸
𝐸
2𝐸

𝑛𝑓 𝐿; 𝑥 − 𝐿
2
𝑑𝑥



II. Random matrix theory 

as a model for number 

variance



Ensembles of random matrices

 Recall Σ𝑓
2 𝐿; 𝐸 ≔

1

𝐸
𝐸
2𝐸

𝑛𝑓 𝐿; 𝑥 − 𝐿
2
𝑑𝑥 surface

 Let 𝑀 = 𝑀𝑁 matrix belonging to a random 

ensemble of 𝑁 × 𝑁 matrices.    𝑁 ↭ 𝐸

 Ensembles: GOE, GUE, Poisson

 GOE (Gaussian Orthogonal Ensemble) – symmetric 

matrix with i.i.d. standard Gaussian entries (save to 

diagonal & relations). 

 GUE (Gaussian Unitary Ensemble) – Hermitian matrix 

with Gaussian entries.

 Poisson – diagonal matrix with i.i.d. entries.



Number variance RMT
 𝑀 = 𝑀𝑁 random 𝑁 × 𝑁 matrix (GOE, GUE, Poisson).

 Take deterministic interval I = 𝐼𝑁 = 𝑎, 𝑎 + 𝐿 .

 𝑛 𝐼 number of eigenvalues in I

 𝐿 = 𝑁 ∙ 𝐿 = 𝔼𝑁 𝑛 𝐼 , allowed to grow with 𝑁. 

 Number variance Σ2 𝐿;𝑁 ≔ 𝔼𝑁 𝑛 𝐼 − 𝐿 2

“ensemble average”.

 Fact: Σ2 𝐿;𝑁 ~൞

2

𝜋2
log 𝐿 𝐺𝑂𝐸

1

𝜋2
log 𝐿 𝐺𝑈𝐸

(Dyson-Mehta, 1963)



Number variance RMT (cont.)

 Fact (Dyson-Mehta): Σ2 𝐿;𝑁 ~൞

2

𝜋2
log 𝐿 𝐺𝑂𝐸

1

𝜋2
log 𝐿 𝐺𝑈𝐸

 Can define σ𝑓
2 𝐿;𝑁 analogously

 σ𝑓
2 𝐿;𝑁 ~ቐ

σ𝐺𝑂𝐸
2 𝑓 𝐺𝑂𝐸

1

2
σ𝐺𝑂𝐸
2 𝑓 𝐺𝑈𝐸

σ𝐺𝑂𝐸
2 𝑓 ≔ ℝ2 𝑥 ∙ መ𝑓 𝑥 2𝑑𝑥 constant

 Variance small 𝑓 ↭very rigid structure

 Σ𝑃𝑜𝑖𝑠𝑠𝑜𝑛
2 ~𝐿 – “easy” exercise



RMT predictions (Berry)
 Conjecture(Berry 1985):Generic chaotic Ω:

ΣΩ
2 𝐿; 𝐸 ~ ൝

Σ𝐺𝑂𝐸
2 𝐿;𝑁 𝑡𝑖𝑚𝑒 𝑟𝑒𝑣𝑒𝑟𝑠𝑎𝑙 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦

Σ𝐺𝑈𝐸
2 𝐿;𝑁 𝑡𝑖𝑚𝑒 𝑟𝑒𝑣𝑒𝑟𝑠𝑎𝑙 𝑣𝑖𝑜𝑙𝑎𝑡𝑒𝑑

1 ≪ 𝐿 ≪ 𝐸 ;     N = N E = E Weyl’s law

Completely integrable systems – Poisson.

 Time reversal violated e.g. by a magnetic field.

 Goal: study the number variance for hyperbolic 

surfaces – ensemble average & window average.

 Not a single positive example to date (numerics

support).



Negative examples 
 Recall Berry ΣΩ

2 𝐿; 𝐸 ~
2

𝜋2
log 𝐿 𝐿 ≪ 𝐸, 𝐿 → ∞

 Selberg 1975: Found a special “arithmetic” surface s.t.

ΣΩ
2 𝐿; 𝐸 ≫

𝐸

log(𝐸)2
large

 Families of arithmetic (hyperbolic) surfaces violating 

GOE by physicists 1985-1990 Bohigas-Giannoni-Schmit, 

Bogomolny-Georgeot-Giannoni-Schmit, Aurich-Steiner.

 Luo-Sarnak (1994): For all arithmetic surfaces Ω = Γ\ℍ2

ΣΩ
2 𝐿; 𝐸 ≫

𝐿

log(𝐿)2
inconsistent to GOE.

 Results consistent with Poisson completely integrable. 

E.g. Bleher-Lebowitz (1995) flat Diophantine torus.



III. Weil-Petterson

model random genus 

g hyperbolic surfaces



Take-home message

Random hyperbolic surfaces

 Definition:Ω is hyperbolic, if it is a smooth surface 

of constant negative curvature (≡ −1).

 For 𝑔 ≥ 2 a moduli space ℳ𝑔 of surfaces.

X ∈ ℳ𝑔 is smooth closed hyperbolic, genus g 

 Two equivalent ways:

1. Different hyperbolic surfaces

2. Endow fixed surface different hyperbolic metrics

 Finite measure on ℳ𝑔 “Weil-Petterson” (WP).

 ⇒ random WP hyperbolic surfaces genus g



Moduli space ℳ𝑔

 For 𝑔 ≥ 0 let Φ𝑔 be the (unique) genus 𝑔 closed surface 

(compact, no boundary, topology).  E.g.𝑔 = 1 ⇝ torus. 

 Fact: For 𝑔 ≥ 2 (assumed), Φ𝑔 could be endowed with 

(many) hyperbolic metrics: i.e.Φ𝑔 hyperbolic surface.

 By Gauss-Bonnet 𝐴𝑟𝑒𝑎 Ω = 4𝜋 𝑔 − 1 , any Ω.

𝑔 → ∞⟺ 𝐴𝑟𝑒𝑎 Ω → ∞

 ⇒Weyl’s law # 𝑗: 𝜆𝑗 ≤ 𝜆 ~(𝑔 − 1) ∙ 𝜆,   𝑔 fixed

 Take into account for number variance

Φ𝑔



WP measure on ℳ𝑔
 Definition: a pair of pants is a hyperbolic surface of 

signature (0,3) – sphere with 3 punctures. 

 Fact: Given 𝑙1, 𝑙2, 𝑙3 ∈ ℝ≥0
3 exists unique (up to 

isometry) pair of pants with these boundary lengths.

 Can glue along equal lengths. Can twist equal pair by 𝛼

 E.g. glue along (𝛾, 𝛾′) get surface signature (0,4), every 𝛼

𝑙1

𝑙2

𝑙3

𝑙2

𝑙3′

𝑙′1

𝛾 𝛾′



Gluing pairs of pants
 When 𝑙1, 𝑙2, 𝑙3 and 𝑙1′, 𝑙2′, 𝑙3′ are pairwise equal can 

glue 2 pants into a genus-2 closed surface. 

 6 parameters: lengths 𝑙1, 𝑙2, 𝑙3 twists 𝛼1, 𝛼2, 𝛼3

𝑙1, 𝑙2, 𝑙3 = 𝑙1′, 𝑙2′, 𝑙3′𝑙1, 𝑙2, 𝑙3 = 𝑙2 , (𝑙1, 𝑙2
′ , 𝑙3

′ = 𝑙2′)



WP measure

 More generally 𝑔 ≥ 2 take

2𝑔 − 2 pants ⇒ 6𝑔 − 6 boundary curves⇒ 3𝑔 − 3 pairs

 Can glue (combinatorial) to closed Φ𝑔 genus 𝑔 surface

 Φ𝑔 serves as “marking”

 Fenchel-Nielsen coordinates 𝑙1, … , 𝑙3𝑔−3 ; 𝛼1, … , 𝛼3𝑔−3

 𝒯𝑔 – Teichmuller, not Moduli

 Euclidean manifold of dimension 6𝑔 − 6.

 Admits Natural infinite measure WP (Wolpert) 

𝑑𝑙1 ∙ ⋯ ∙ 𝑑𝑙3𝑔−3 ∙ 𝑑𝛼1 ∙ ⋯ ∙ 𝑑𝛼3𝑔−3 on 𝒯𝑔



Moduli space ℳ𝑔 and WP measure

 Φ𝑔 is (unique) genus 𝑔 smooth “marking” surface.

 Teichmuller space 𝒯𝑔 = 𝒯 Φ𝑔 - hyperbolic metrics Φ𝑔.

 Let 𝜑:Φ𝑔 → Φ𝑔, 𝜌 be a self-homeomorphism of Φ𝑔

 Induces (another) metric on Φ𝑔.  Identified within ℳ𝑔. 

 Mapping class group MCG Φ𝑔 ,  WP measure invariant.

 ℳ𝑔 = MCG Φ𝑔 \ 𝒯𝑔 orbifold dimension 6𝑔 − 6

 Induce WP probability measure 𝒫𝑔 onℳ𝑔.

 (WP) random hyperbolic surface genus 𝑔

 Study initiated by Maryam Mirzakhani (2010s).



Moduli space ℳ𝑔 - summary

 Φ𝑔 genus 𝑔 surface, serves as “marking”.

 Abstract definition: For 𝑔 ≥ 2:

1. Teichmuller space 𝒯𝑔 = 𝒯 Φ𝑔 - hyperbolic metrics Φ𝑔

2. Mapping class group MCG Φ𝑔 acts on 𝒯𝑔: 𝜑 ∈ 𝒯𝑔
𝜑:Φ𝑔 → Φ𝑔, 𝜌 by pullback the metric 𝜌. 

3. Moduli space ℳ𝑔 = MCG Φ𝑔 \ 𝒯𝑔 is the genuinely 

different hyperbolic metrics on Φ𝑔.

4. Inherits WP probability measure from 𝒯𝑔

Φ𝑔



Analogy 𝑔 = 1
 No hyperbolic

 Given 𝑣1, 𝑣2 ∈ ℝ
2 let the lattice Λ = 𝑣1, 𝑣2

 By rotating and scaling may assume 𝑣1 = 1, 𝑣2 = 𝑎 + 𝑏𝑖, 
Im 𝑏 > 0. Λ = 𝑣1, 𝑣2 = 1, 𝑎 + 𝑏𝑖 , defines metric on 

the 2-torus 𝕋2 = ℝ2/ℝ∗Λ, modulo scaling. 

 Hence different metrics on 𝕋2:
𝒯1 = ℍ2 = 𝑥 + 𝑦𝑖: 𝑦 > 0 ⊆ ℂ

 Metrics induced by 𝑎 + 𝑏𝑖, 𝑎′ + 𝑏′𝑖 identified if define 

the same lattice Λ. 

 Factor by 𝑆𝐿2 ℤ : ℳ𝑔 = 𝑆𝐿2 ℤ \ℍ2. 

 Finite (hyperbolic) measure.



Hyperbolic surfaces
 Poincare half-plane model hyperbolic plane

ℍ2 = 𝑥 + 𝑦𝑖: 𝑦 > 0 ⊆ ℂ

 Metric 𝑑𝑠2 =
𝑑𝑥2+𝑑𝑦2

𝑦2

 Laplacian Δ = 𝑦2 𝜕𝑥
2 + 𝜕𝑦

2

 Any hyperbolic surface is a quotient of ℍ2 by a discrete 

group of isometries (uniformization). Inherits structure.



Illustration of hyperbolic surfaces

Genus 2 Pseudosphere



IV. Statement of 

main results



Number variance random WP surfaces

 Recall 𝑛𝑓 𝑋; 𝐿, 𝑦 ≔ σ𝑗 𝑓
𝜆𝑗−𝑦

𝐿
𝑋 ∈ ℳ𝑔

 Recall σ𝐺𝑂𝐸
2 𝑓 = ℝ2 𝑥 ∙ መ𝑓 𝑥 2𝑑𝑥 number 

 Rudnick `22: GOE statistics high genus: 𝑓 even smooth, s.t.
መ𝑓 is compactly supported.

 Explicated result.

 Ensemble average. Valid for individual (“typical”) 𝑋 ∈ ℳ𝑔?

 CLT (Rudnick-W `23) same regime; another work

lim
𝐿,𝑦→∞
𝐿=𝑜 𝑦

lim
𝑔→∞

𝑉𝑎𝑟𝑔
𝑊𝑃 𝑛𝑓 𝑋; 𝐿, 𝑦 = σ𝐺𝑂𝐸

2 𝑓lim
𝐿,𝑦→∞
𝐿=𝑜 𝑦

𝑉𝑎𝑟𝑔
𝑊𝑃 𝑛𝑓 𝑋; 𝐿, 𝑦 = σ𝐺𝑂𝐸

2 𝑓



GOE fluctuations for typical surfaces

 Rudnick-W 23’: GOE variance individual 𝑋 ∈ ℳ𝑔, high 

probability 𝑔 → ∞. 

 Stronger assumptions on 𝐿, 𝑦: Assume 

𝐸

log(𝐸)
≪ 𝐿 = 𝑜 𝐸

 Consider 𝒱𝐸;𝐿 𝑋 ≔
1

𝐸
𝐸
2𝐸

𝑛𝑓 𝑋; 𝐿, 𝑦 − 𝐿
2
𝑑𝑦 r.v.

𝑋 ∈ ℳ𝑔 random w.r.t.WP measure. 

 𝐿 = 𝐿 𝐿 = 𝐿(𝐸)- parameter.  As 𝑦 ∈ 𝐸, 2E expectation 

𝔼𝑔
𝑊𝑃 𝑛𝑓 𝑋; 𝐿, 𝑦 grows. Dominates fluctuations. 

 ෨𝑉𝐸;𝐿 𝑋 unbiased version. 



GOE fluctuations for typical surfaces

 Recall 𝒱𝐸;𝐿 𝑋 ≔
1

𝐸
𝐸
2𝐸

𝑛𝑓 𝑋; 𝐿, 𝑦 − 𝐿
2
𝑑𝑦 r.v.

 ෨𝑉𝐸;𝐿 𝑋 unbiased version. 

 σ𝐺𝑂𝐸
2 𝑓 = ℝ2 𝑥 ∙ መ𝑓 𝑥 2𝑑𝑥

 Assume 
𝐸

log(𝐸)
≪ 𝐿 = 𝑜 𝐸 (LE)

 Statement Rudnick-W (23’):  For every 𝜀 > 0

For all 𝐿, 𝐸 sufficiently large (depend on 𝜀) subject to (LE)

For all 𝑔 sufficiently large (depending on 𝐿, 𝐸): 

One has ෨𝑉𝐸;𝐿 𝑋 − Σ𝐺𝑂𝐸
2 𝑓 < 𝜀 almost full probability.



GOE fluctuations for typical surfaces

 ෨𝑉𝐸;𝐿 𝑋 unbiased version of smooth number variance. 

 σ𝐺𝑂𝐸
2 𝑓 = ℝ2 𝑥 ∙ መ𝑓 𝑥 2𝑑𝑥

 Assume 
𝐸

log(𝐸)
≪ 𝐿 = 𝑜 𝐸 (LE)

 Then ∀𝜀 > 0

For all 𝐿, 𝐸 sufficiently large (depend on 𝜀) subject to (LE)

For all 𝑔 sufficiently large (depending on 𝐿, 𝐸): 

One has ෨𝑉𝐸;𝐿 𝑋 − Σ𝐺𝑂𝐸
2 𝑓 < 𝜀 almost full probability.

 Restatement, limit subject to (LE) 

lim
𝐸→∞
𝐿→∞

lim𝑠𝑢𝑝
𝑔→∞

𝒫𝑔
𝑊𝑃 ෨𝑉𝐸;𝐿 𝑋 − Σ𝐺𝑂𝐸

2 𝑓 > 𝜀 = 0



V. On the proofs



Length spectra of hyperbolic surfaces

 Length spectrum (primitive) ℒ𝑋
𝑔
of 𝑋 ∈ ℳ𝑔: (discrete) set 

of lengths of distinct (primitive) closed geodesics in 𝑋.

 Fact (Huber): Spectrum of 𝑋 ↭ ℒ𝑋
𝑔

(determine).

 Careful: Neither determines 𝑋 (isometry class). Almost.

 Selberg’s trace formula express 𝑛𝑓 𝑋; 𝐿, 𝑦 = 𝜑 ℒ𝑋
𝑔

,   

𝜑 = 𝜑𝑓;𝐿,𝑦:𝒩 → ℝ “linear functional”, 𝒩 – discrete 

measures on ℝ≥0.

 ෨𝑉𝐸;𝐿 𝑋 = 𝜓 ℒ𝑋
𝑔

.  𝜑,𝜓 continuous 𝒩 (vague topology)

 ℒ𝑋
𝑔

is random. Think as point-process. Limit 𝑔 → ∞?

 Geodesics are simple and non-simple.



(Random) Length spectra

 ℒ𝑋
𝑔

is random. Think as point-process. Limit 𝑔 → ∞?

 Geodesics are simple or non-simple (self-intersecting).

 For 𝑋 fixed, total number of geodesics of length ≤ 𝑀
exponential (Geodesic Prime Number Theorem).

 Number of simple geodesics of length ≤ 𝑀 – polynomial 

(degree 6𝑔 − 6) 𝑀 → ∞, 𝑋 fixed (𝑔 fixed). 

 ⇒ Most geodesics are self-intersecting.

 “Mirzakhani’s integration formula” – a way to average 

functionals on ℳ𝑔 of simple length spectrum. 

 Too bad.



Simple vs. self-intersecting

Simple

Self-intersecting



Length spectra as point process

 Situation changes drastically regime as 𝑔 → ∞ (𝑀 fixed).

 Here most geodesics are simple. 

 Number of (simple primitive) geodesics of length ≤ 𝑀
converges to Poisson r.v., with certain parameter.

 Mirzakhani-Petri (`17) proved (simple/total) ℒ𝑋
𝑔
⇒ 𝑃𝑃𝑃

intensity 
2sinh(𝑥)2

𝑥
, denote ℒ∞. 

 Mirzakhani’s integration formula ⟺ Poisson correlations.

 Recall ෨𝑉𝐸;𝐿 𝑋 = 𝜓 ℒ𝑋
𝑔

, 𝜓 = 𝜓𝐸;𝐿 continuous.

 Then ෨𝑉𝐸;𝐿 𝑋 ⇒ 𝜓 ℒ∞ . Can perform computations 

within PPP. Evaluate expectation Σ𝐺𝑂𝐸
2 𝑓 , variance vanish.



Merci Beaucoup!
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