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Abstract. Salsa20 is one of the most famous stream ciphers in recent
times. Most of the attacks available so far against Salsa are differential
attacks, where a difference is given as an input in the initial state of the
cipher and in the output, some correlation is investigated, which works
as a distinguisher. All the key recovery attacks in the last decade against
Salsa are based on this observed distinguisher. However, the distinguisher
in the differential attack was purely an experimental observation, and the
proper reason for this bias was unknown so far. In this paper, we provide
a full theoretical proof of this observed distinguisher. This is the first
attempt to provide a theoretical justification of this bias which plays the
major role in all the key recovery attacks so far against this cipher.
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1 Introduction

Salsa20 was designed by D. Bernstein in the year 2005 as a candidate for eStream [2].
It was one of the finalists in the competition. The original version of Salsa has 20
rounds. However, the designer submitted the 12 rounds version in eStream. The first
cryptanalysis against Salsa was presented by Crowley in 2005 [4], who attacked it upto
five rounds. Later, six rounds and seven rounds Salsa were attacked respectively by
Fischer et al. [6] and Tsunoo et al. [10]. So far, this cipher has been attacked only upto
8 rounds. The central ideas of most of the attacks are based on differential distinguisher.
Fischer [6] used it in a key recovery attack upto sixth round. In 2008, Aumasson et
al. [1] produced a significant improvement in this attack by introducing the idea of
probabilistically neutral bits. By using the differential in the 4th round, they attacked
Salsa upto 8th round. Afterwards, there has been further improvement in the attack
complexities in last decade [9, 8, 7]. In [3] a distinguisher has been found upto 5 rounds
by a linear combination of multiple bits of the output. But still, no work has been able
to extend the attack upto 9th round in the last decade.

For a major improvement in this attack method, we need a detailed analysis of
the whole attack procedure. The whole idea is so far mostly based on experimental
observations only. Starting from the distinguisher, the idea of probabilistic neutral bits,
meet-in-the middle attack etc. are mostly relying on experiments. In this attempt, we
go through the internal mechanism of how the differential distinguisher is created. Our
aim is not to reduce the complexity of the attack, but find out the actual reason for
the already observed results.



2 Structure

Salsa uses a 256 bit key in its algorithm. Another 128 bit key version is there, which
replicates its 128 bit key to another copy and produces total 256 keybits. The internal
state of Salsa is basically a matrix of size 4× 4. Each of the 16 cells contains a 32-bit
binary number, which is called a ‘word’. These 16 words or cells can be divided into
three categories:

1. Constant cells: These cells lie in the diagonal of the matrix. These contain some
predefined constant 32-bit numbers and are denoted by ci’s. The values of these
cells are given below in hexadecimal form:
c0 = 0x61707865, c1 = 0x3320646e, c2 = 0x79622d32, c3 = 0x6b206574.

2. Key cells: There are eight cells in the matrix which contain the keybits. These
are denoted by k0, k1, . . . , k7.

3. Counters and nonces: There are four cells t0, t1, v0 and v1 which are counters
and nonces. These are also called IVs.

X =


X0 X1 X2 X3

X4 X5 X6 X7

X8 X9 X10 X11

X12 X13 X14 X15

 =


c0 k0 k1 k2
k3 c1 v0 v1
t0 t1 c2 k4
k5 k6 k7 c3

 .

The initial matrix is denoted by X or X(0). This matrix is updated by a function
called quarterround. After completion of r rounds, we denote the updated matrix as
X(r). The quarterround function works on a 4-tuple (a, b, c, d). It uses three operations:
addition modulo 232 (+), left rotation (≪) and XOR (⊕). The function is as follows:

b = b⊕ ((a + d)≪ 7),

c = c⊕ ((b + a)≪ 9),

d = d⊕ ((c + b)≪ 13),

a = a⊕ ((d + c)≪ 18).

This function works on the columns and rows of the matrix in alternative round. In
the odd rounds it works on the columns, and this is called columnround. Application
on rows are performed in the even rounds and called rowround.

Notations: Xi denotes the ith cell of the matrix X; Xi[j] denotes the jth bit of the

cell Xi; X
(r) denotes the matrix after r rounds; X

(r)
i [j] denotes the jth bit of the ith

cell of the matrix after r rounds; location (p, q) denotes the qth bit of the pth cell;
Pr(A) denotes the probability of the event A.

Differential attack and our contribution: Here we discuss in brief the idea of a
differential attack on Salsa. A single bit of a IV is changed in the initial matrix X
producing a new matrix X ′. As in the work of Aumasson et al. [1], the difference is
given in 31st bit of X7. Then, the Salsa algorithm is applied for four rounds on both
X and X ′. After four rounds, a correlation is observed on 14th bit of X1 and X ′1. This
correlation is that the probability that the bit (1, 14) of X and X ′ (after four rounds)
are equal with probability 56%. This is called the forward bias. This is an experimental
observation, and no theoretical approach has been made to justify the proper reason
for this bias. In this paper, we attempt to prove this bias. We track the propagation
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of the input difference after each round and reach the fourth round to find the bias
in the position (1, 14), (14th bit of the cell X1). In this context, we clearly mention
here that throughout paper whenever we say that a cell or bit is “not affected” or
“not influenced” by the difference, we mean that upto that round, that cell or that bit
position has the same value for X and X ′.

3 Some mathematical results

Here, at first we state without proof a lemma from [5]. For the proof, one can check [5].

Lemma 1. a = a31a30a29 · · · a0 and b = b31b30b29 · · · b0 be two independent arbitrarily
chosen numbers of 32 bits. Let b′ = b′31b

′
30b
′
29 · · · b′0 be a number which differs at exactly

one bit (say n-th, n ≤ 31) from b. Consider S = a + b mod 232 and S′ = a′ + b′

mod 232. Then for any k ≥ 0 such that n + k ≤ 31, the probability that S and S′ will
differ at (n + k)th bit is 1

2k
.

We will use this result when we prove the observed bias for Salsa.
Next, we deal with a case which is slightly more complicated and generalised.

Theorem 1. Let a, b are two independent randomly chosen single bit number. Let a′, b′

be single bit numbers such that Pr(a = a′) = p and Pr(b = b′) = q. Let s = a + b and
s′ = a′ + b′. Then the probability Pr(si = s′i) can be given by:

1. pq + (1− p)(1− q) for i = 0.
2. 1+pq

2
for i = 1.

Proof. For i = 0: In this case, s0 = a ⊕ b and s′0 = a′ ⊕ b′. So, s0 = s′0 implies
s0 ⊕ s′0 = 0. Thus (a ⊕ a′) ⊕ (b ⊕ b′) = 0. So, either (a ⊕ a′) = (b ⊕ b′) = 0 or
(a⊕ a′) = (b⊕ b′) = 1.
In the first case, the probability is:

Pr((a = a′) ∩ (b = b′)) = Pr(a = a′) · Pr(b = b′) (independence)

= pq.

In the second case, the probability is

Pr((a 6= a′) ∩ (b 6= b′)) = Pr(a 6= a′) · Pr(b 6= b′) = (1− p)(1− q).

For i = 1: Since a and b are single bits, so s1 and s′1 are basically the carries generated
in the previous sums. So, we find out the possible ways of generation of a different carry
in a + b and a′ + b′.
Event 1: One of (a, b) or (a′, b′) is (0, 0) and the other one is (1, 1). In this case, the
tuple (1, 1) generates a carry 1, but (0, 0) does not. So, si 6= s′i. Now, the probability
of this event we calculate in the following way.

We first focus on the tuple (a, b). The probability that it takes the value either (0, 0)
or (1, 1) is 1

2
, since there are total four possible options. Once this value is assigned,

(a′, b′) must choose the other possible value. This means, a′ must not be equal to a
and b′ must not be equal to b. This probability should be (1− p)(1− q). Therefore, the
probability of this whole event is 1

2
(1− p)(1− q).

Event 2: a = a′ = 1 and b 6= b′. In this case, one of the tuples (a, b) and (a′, b′) is
(1, 1), which generates carry 1, and the other one is (1, 0), which generates carry 0.
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Now, Pr(a = a′ = 1) = Pr(a = a′) · Pr(a = 1) = p · 1
2

= p
2
. Then, Pr(b 6= b′) = (1− q).

Therefore, the probability of this event is p
2
(1− q).

Event 3: b = b′ = 1 and a 6= a′. This event is similar to the previous one. By similar
arguments it can be shown that the probability is q

2
(1− p).

These three events are mutually disjoint and other than these three events there is no
way of producing si 6= s′i. Therefore the probability of si 6= s′i is the sum of these three
probabilities, which is

1

2
(1− p)(1− q) +

p

2
(1− q) +

q

2
(1− p) =

1− pq

2
.

Therefore, the probability of equality can be given by 1−
(
1−pq

2

)
= 1+pq

2
.

�

Now, let us generalise this result little bit further. Suppose a, b, a′, b′ are not single
bit numbers. We focus on some ith bit of them. Suppose we know the correlation
between the corresponding bits of a and a′ (and similarly for b and b′). The question
is whether we can find a probabilistic relation between the ith bit of s and s′. One
important point that we have to keep in mind is that the ith bit of s does not depend
only on ai and bi. There is an involvement of a carry also, which is produced from the
previous bits. Suppose, by ci and c′i we denote the carries generated at (i − 1)th bits
of s and s′ respectively, which are to be added in ith bit. So, si = ai ⊕ bi ⊕ ci (same
for s′).

Theorem 2. Suppose a, b be two independent and randomly chosen n-bit numbers. Let
a′, b′ be n-bit numbers such that for all j = {0, 1, . . . , (n− 1)}, Pr(aj = a′j) is given by
pj and Pr(bj = b′j) is given by qj. Suppose s = a + b and s′ = a′ + b′. Then,

Pr(ci+1 6= c′i+1) = Pr(ci 6= c′i) ·
(

1− p− q +
3pq

2

)
+ Pr(ci = c′i)

(1− pq)

2
.

Proof. Suppose ci 6= c′i. Without loss of generality, let us assume that ci = 1 and
c′i = 0. Let us find the possible cases where ci+1 and c′i+1 are different.
Event 1: One of (ai, bi) and (a′i, b

′
i) is (0, 0) and the other one is (1, 1). If (ai, bi) = (1, 1)

and (a′i, b
′
i) = (0, 0), then ai + bi + ci = 3, which generates a carry 1. On the other side,

a′i + b′i + c′i = 0, which generates carry 0. Therefore ci+1 6= c′i+1. If (a′i, b
′
i) = (1, 1) and

(ai, bi) = (0, 0), then ai + bi + ci = 1, which generates carry 0 and a′i + b′i + c′i = 2,
which generates carry 1. Therefore, again ci+1 6= c′i+1. The probability of this event is
(1−p)(1−q)

2
, as computed in the previous theorem.

Event 2: (ai, bi), (a
′
i, b
′
i) ∈ {(0, 1), (1, 0)} and (ai, bi) = (a′i, b

′
i). In this case, ai+bi+ci =

2, which generates carry 1 and a′i+b′i+c′i = 1, which generates carry 0. So, ci+1 6= c′i+1.
The probability of this event can be calculated as Pr(ai = a′i) · Pr(bi = b′i) · Pr(ai 6=
bi) = pq

2
.

Event 3: (ai, bi), (a
′
i, b
′
i) ∈ {(0, 1), (1, 0)} and (ai, bi) 6= (a′i, b

′
i). Similar to the previous

event, one can easily verify that in this event ci+1 6= c′i+1 . Also, by similar arguments as

the previous event, the probability can be calculated as (1−p)(1−q)
2

. These three events
are mutually disjoint. So, given ci 6= c′i, the total probability of the event (ci+1 = c′i+1)
can be computed by adding them. This sum is 1− p− q + 3pq

2
. On the other hand, if

(ci = c′i), then both of them can be either 0 or 1. If 0, then we can treat ai, bi, a
′
i, b
′
i like

the least significant bits as in Theorem 1. So, the probability is 1−pq
2

. Similarly, if both

the carries are 1, it can be shown by similar method that the probability is (1−pq)
2

.
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So, the total probability of Pr(ci+1 6= c′i+1) can be calculated as Pr(ci 6= c′i) · (1− p−
q + 3pq

2
) + Pr(ci = c′i)

(1−pq)
2

. �

Corollary 1. Supose a, a′, b, b′ are as in Theorem 2. Then, if qi = 1
2
, Pr(ci+1 6=

c′i+1) = 1
2
− pi

4
.

Proof. Let us prove it for i = 0. So, the probability Pr(c1 6= c′1) can be given by
Theorem 1, which is 1−p0q0

2
. Putting q0 = 1

2
, we get 1

2
− p0

4
. Therefore the result is true

for i = 0. Now, for i = 1, we use these two results in Theorem 2 and putting q1 = 1
2
,

we get the probability as 1
2
− p1

4
. Similarly, using this result we can prove the result

for i = 2. Proceeding this way the result can be proved for any i. �

Theorem 3. Consider a, b, a′, b′ as n-bit numbers similar to 2. Also, s, s′, cj and c′j
are as mentioned. Now, suppose at ith bit, ci 6= c′i. The probabilities Pr(ai = a′i) and
Pr(bi = b′i) are given by p and q respectively. Then, the probability that the ith bit of
the sums s and s′ matches is p(1− q) + q(1− p).

Proof. Without loss of generality, let us assume that ci = 1 and c′i = 0. Now, si =
ai ⊕ bi ⊕ ci = ai ⊕ bi ⊕ 1 and s′i = a′i ⊕ b′i ⊕ c′i = a′i ⊕ b′i. Therefore si = s′i implies
ai ⊕ bi ⊕ a′i ⊕ b′i = 1. Therefore, either ai ⊕ a′i = 0 and bi ⊕ b′i = 1, or ai ⊕ a′i = 1
and bi ⊕ b′i = 0. Probability of the first event is Pr(ai = a′i) · Pr(bi 6= b′i) = p(1 − q).
Similarly, probability of the second event is q(1 − p). Adding these two probabilities,
we get the desired result. �

4 Salsa

In this section we prove the forward bias for Salsa, i.e., the probability that the bit
(1, 14) of X and X ′ after four rounds matches with probability approximately 0.56. It
is expected that as the algorithm progresses, the correlation between X and X ′ de-
creases and randomness increases. So, one important point is that our aim is to provide
theoretical justification only wherever we observe bias. If in any case, we observe that
there is no bias, obviously we do not attempt to justify the reason for the unbiasedness.

First round:
In the first round, at first we find Pr(X15[0] = X ′15[0]). In that context, we have

the following result.

Lemma 2. After the completion of the first round, the probability that the 0th bit of
X15 and X ′15 matches is 0.75.

Proof. In the columnround operation on the last row of X, we have: (a, b, c, d) =
(X15, X3, X7, X11). The input difference is given in 31st bit of X7. Since in the quar-
terround function b (here X3 and X ′3) is updated first, and X7 (here it is c) is not
involved in the update function of b, there is no difference between X3 and X ′3 after
the update, i.e., X3 = X ′3. In the next step, c (X7 and X ′7) is updated. It involves the
variables a and b, which are X3 and X15. Both of them are same for X and X ′ so far.
Therefore, these variables do not bring any difference between X and X ′. The only
difference is caused by the XOR of c, which is X7. So, after the update, X7 and X ′7
has only one difference, which is at 31st bit.
d = d⊕ ((c+ b)≪≪≪ 13): In the update of d, the involved variables are d, c, b. d(X11)
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and b(X7) do not have any difference between X and X ′. c has difference in 31st bit.
So in the addition c + b, exactly one difference is there between X and X ′, which is at
31st bit. After the rotation by 13 bits, that difference comes at 12th bit. So, X11 and
X ′11 has only one bit difference, which is at 12th bit.
a = a ⊕ ((d + c) ≪≪≪ 18): In the final update, a has no difference between X and
X ′. d has a difference at 12th position, and c has difference at 31st. In the sum c + d,
difference will be at 12th and 31st bit. But, since this is an addition operation, the dif-
ference at 12th bit may propagate to the next bit. The probability of this propagation
we calculate using Lemma 1. Here, n = 12, k = 2, n + k = 14. So, the probability of
the propagation is 1

22
= 1

4
. After left rotation by 18 bits, this difference comes to the

0th bit. So, Pr(X15[0] = X ′15[0]) = 1− 1
4

= 0.75. �

Second round: In the second round, we prove a small but important result which we
will use later. It says that upto the second round, the least significant bit of the cell
X11 is not affected by the difference propagation.

Lemma 3. After the completion of the second round, X11[0] = X ′11[0].

Proof. (a, b, c, d) = (X10, X11, X12, X13). In the first step, we have: b = b⊕ ((a+ d)≪
7). Here, a and d have no difference in X and X ′, because after the first round, the
propagation of the difference is within the fourth column only. So, the only difference
can be produced by the XOR of b, which has only one difference at 12th bit. Therefore,
0th bit is not affected by this operation. �

Third Round: Now we provide the proof of some biases that we observe in the third
round. In these proofs, we are going to use the results obtained in the first and second
round.

First column: In this column, the tuple (a, b, c, d) is (X0, X4, X8, X12).

Theorem 4. Pr(X4[8] = X ′4[8]) ≈ 0.998.

Proof. In the first round, the cell X4 is not affected by the propagation of input differ-
ence, since the propagation stays within the fourth column only. In the second round,
the rowround operation on the second row helps the propagation of the difference into
X4 during the operation d = d ⊕ ((b + c) ≪ 13). In this operation, since c (in this
case, X7) has a difference at 31st bit, it brings difference in 12th bit of d (because
of the left rotation by 13 bits). The bits on the left side of 12th bit are also affected
probabilistically, which decreases gradually as the distance increases. But, since the
addition does not have any effect on the bits which are on the right side of 12th bit are
not affected by this operation. Therefore, even after completion of the second round,
we have X4[i] = X ′4[i] for all i < 12. Now, in the third round, X4 is updated as by
the function: b = b⊕ ((a + d)≪ 7), where a, d are respectively X0 and X12 from the
second round. We focus on the 1st bit of (a + d), since it reaches the 8th bit position
after rotation by 7 bits. Now, since X0 is on the first row, it is not affected by the
propagation upto the 2nd round. Therefore we only focus on X12. In the first round,
X12 = X ′12. In the second round, it is updated by the function:

b = b⊕ ((a + d)≪ 7),

where a, d are X15 and X14 from the 1st round. After the left rotation, the 26th bit
comes in place of 1st bit. Therefore, we focus on 26th bit of X15+X14. X14 is unaffected
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in the first round (3rd column). So, the difference may generate only from X15. Now,
X15 has difference at 17th bit, but no difference afterwards upto 26th bit. Therefore the
probability that during the addition a+d, the difference would propagate to 26th bit is

1
226−17 = 1

29
. Therefore, the probability that after the second round, (X12[1] = X ′12[1])

is 1− 1
28
≈ 0.998. Therefore, after the 3rd round, Pr(X4[8] = X ′4[8]) ≈ 0.998. �

Theorem 5. After the 3rd round, Pr(X12[21] = X ′12[21]) ≈ 0.025.

Proof. X12 is updated by the function:

d = d⊕ ((c + b)≪ 13),

where c and b are respectively X8 and X4. Since the rotation is by 13 bits, X12[21] is
basically the XOR of X12[21] (after the second round) and 8th bit of (X8 +X4). Here,
X8 and X4 are already updated upto the third round.

X12[21] after the second round: This cell is unaffected in the first round. In the
second round it is updated by

b = b⊕ ((a + d)≪ 7),

where a, d are X15 and X14 respectively. So, we focus on the 14th bit of X15 + X14.
The only difference can come by the propagation of the difference of X15 at 0th bit
(Lemma 2) and next few bits, whose effect is neglible at 14th bit. Therefore, the
probability of difference is approximately 0. So, after the second round, Pr(X12[21] =
X ′12[21]) ≈ 1.
(X8 +X4)[8] after third round: Upto 2nd round, the 8th bit of X8 and X4 are not
influenced by the difference. In the third round, X8 is XORed with X4 +X0. Here, 31st
bit of X4 is different from X ′4 with probability almost 1, because it was XORed with X7

in the previous step. Therefore, 8th bit of X8 differs from X ′8 with probability almost
1. This means, Pr(X8[8] = X ′8[8]) ≈ 0. On the other hand X4[8] is affected by the
difference with probabilty ≈ 0.025. In their sum, neglecting the small probabilities of
propagation from the previous bits, we can say Pr((X8+X4)[8] = (X ′8+X ′4)[8]) ≈ 0.025.
Therefore the final XOR will produce equality with probability ≈ 0.025. �

Theorem 6. After the completion of the third round, Pr(X0[7] = X ′0[7]) ≈ 0.94.

Proof. In the third round, X0 is updated by the function: a = a ⊕ ((c + d) ≪ 18),
where c and d are X8 and X12 respectively which are already updated in the third
round. Since the rotation is by 18 bits, the 7th bit of updated X0 can be given by:
X0[7] ⊕ (X8 + X12)[21]. Now, X0 = X ′0 upto the second round. So, the difference in
the updated X0 and X ′0 can be caused only by the difference of (X8 + X12)[21] and
(X ′8 + X ′12)[21]. The probability of the equality of these two bits can be found by
partitioning it into two events: If there is no difference of the carry from previous bit,
and if there is adifference in the carry. In the first case, the probability of equality can
be found by Theorem 1, where p = Pr(X12[21] = X ′12[21]) = 0.025 (Theorem 5). This
value is approximately 0.975.

Next we focus on Pr(X8[21] = X ′8[21]) to get q. In the second round, this bit is
updated as d = d ⊕ ((b + c) ≪ 13), where b is X0 and c is X4. Since X0 is not
influenced by the difference so far, we focus on 8th bit of X4 (since rotation is by 13
bits). This bit has a direct influence of the difference given in 31st bit of X7, which
after rotation by 9 bits, reaches this position. So, this bit is different with probability
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1. So, in the 2nd round, Pr(X8[21] = X ′8[21]) = 0. In the third round, one can check
that the term (b + c) has influence over this position with very negligible probability.
Therefore, this probability q is approximately 0. In the second case, the probability
can be found by Theorem 3, which gives the probability as approximately 0. Next we
find the probability of the difference of the carry. Though there are 20 bits on the
right side, we ignore the 19 bits of the right side since their influence is negligible
and consider only the 20th bit. So, the probability of equality of the carries can be
computed by Theorem 2, where p = 0.996, q = 0.95. Using the formula, we have the
probability of equality of the carries approximately as 0.97. So, the total probability:
0.97× 0.975 + 0.03× 0 ≈ 0.94. �

Second column: In this column, the tuple (a, b, c, d) is (X1, X5, X9, X13).

Theorem 7. After third round, Pr(X1[14] = X ′1[14]) = 0.96.

Proof. In third round, X1 is updated by d = d ⊕ ((b + c) ≪ 13). Here, upto the
second round, X1 (or d in the second round) is not influenced by the difference. b
and c are respectively X9 and X13 from the 3rd round. So, we focus on the 1st bit of
their sum (since the rotation is by 13 bits). Now, X13 is updated in the 2nd round by
c = c ⊕ ((a + b) ≪ 9). In that update, on the 24th bit we focus, due to the rotation.
Since the 19th bit contains a difference during its update (can be checked very easily),
this bit is affected with probability 1

25
(Lemma 1). So, the probability of equality is

1− 1
25
≈ 0.97. The differences in the addition a+ b in the third round do not bring any

significant change in this probability. By similar argument one can very easily check
that Pr(X9[1] = X ′9[1]) ≈ 0.99. Therefore, the probability of the equality of 1st bit of
(X9 + X13) can be given by 0.97× 0.99 ≈ 0.96. (here we ignore the probability of the
difference in the carry from the previous bit, since it is negligible). Therefore, the final
probability of the given event is also 0.96. �

Fourth column:

Theorem 8. After the third round, Pr(X3[7] = X3[7]) = 0.75.

Proof. (a, b, c, d) = (X15, X3, X7, X11). In the first step, X[3] is updated by the function
b = b ⊕ ((a + d) ≪ 7)). After the first round, the first row is not influenced by the
difference. Therefore in the second round, the rowround operation on the first row
also does not bring any difference. So, X[3] and X ′[3] is exactly same after the second
round. Also, from Lemma 3, we know that the 0th bit of X11 and X ′11 are equal after
the second round. Therefore the difference at 0th bit of a + d occurs iff the 0th bit of
a has the difference. Therefore, the probability of the equality in the least significant
bit of a + d for X and X ′ is equal to the difference at the least significant bit of a i.e.,
Pr(X15[0] = X15[0]), which is 0.75, from Lemma 2. Therefore, this probability is 0.75.
Now, after left rotation by 7 bits, this bit shifts to the 7th bit. And this is XORed with
b, which does not have any difference. Therefore, the probability that the 7th bit of
the updated b is equal for X3 and X ′3 is 0.75. �

Fourth Round:

Theorem 9. After fourth round, Pr(X1[14] = X ′1[14]) ≈ 0.56.
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Proof. In the rowround on the first row of X, we have: (a, b, c, d) = (X0, X1, X2, X3).
So, b = X1 is updated at first. We focus on the 14th bit of X1 and X ′1. Let us denote
the 14th bit of b as b[14]. So b[14] = b[14] ⊕ ((a + d)[7]) (since the 7th bit of a + d is
left shifted by 7 bits and reaches the 14th bit position).

Let us first focus on the 7th bit of a+ d. The probability of the equality of this bit
can be computed for two separate cases: If there is no difference in the carry from the
previous bit, and if there is difference in the carry.
Event 1: If there is no difference in the carry, the probability of equality at (a + d)[7]
can be calculated by the formula derived from Theorem 1, which is pq(1 − p)(1 − q).
Here, p = 0.94 (Theorem 6). In the 3rd round, X3 is updated by b = b⊕ ((a+d)≪ 7).
So, the 7th bit of X3 can be given by XOR of the previous X3 and 0th bit of X11

and X15. Since the 0th bit of X3 and X11 unaffected by the difference upto the second
round, so the difference can only come due to the difference at X15. Now, the 0th bit of
X15 possesses equality with probability 0.75 after the first round (Lemma 2). It remains
the same after the second round since in this rowround all the other key cells involved
are not influenced by the difference. So the probability is q = 0.75. So the probability
of the equality if there is difference in the carry is (0.94× 0.75 + .06× 0.25) ≈ 0.71.
Event 2: If there is difference in the carry, the probability can be calculated by the
formula from Theorem 3, which is p(1 − q) + q(1 − p). So, the probability is: (0.94 ×
0.25 + 0.06× 0.75) ≈ 0.29.

Now, we find the probabilities of event 1 and event 2. We experimentally observe
that in d, the 6th bit does not possess any bias, i.e., Pr(X3[6] = X ′3[6]) = 1

2
. Therefore,

as already mentioned in the beginning of this section, we do not attempt to prove this
probability. Suppose we denote this probability by q6. So, q6 = 1

2
. Therefore we can use

Corollary 1 here. By a similar argument as in the proof of Pr(X3[7] = X ′3[7]) = 0.94,
it can be proved that p6 = Pr(X3[6] = X ′3[6]) = 0.9. Therefore, the probability that
there is difference in the carry is 1

2
− 0.9

4
≈ 0.28. And the probability that there is no

difference in the carry is 1 − 0.28 = 0.72. So, calculating the total probability, we get
0.59. Next, this bit is XORed with b[14]. The probability that b[14] differs is 0.96, from
Theorem 7. So, the final probability can be given by the formula (pq + (1− p)(1− q))
(Theorem 1), where p = 0.96 and q = 0.59. So, we have the probability approximately
as 0.56. �

In Table 1, we provide a comparison between the probabilities achieved theoreti-
cally and by experiment side-by-side in second column and third column. We perform
experiment over 10,000 random key-IV pairs to produce this result.

Chosen IV Cryptanalysis: In [7], Maitra improved the bias for same input-
output pair by suitably choosing the IVs. Using this idea, he improved the probability
Pr(X1[14] = X ′1[14]) to 0.62. This probability can also be theoretically proved by
our approach. The tracking of the biases will be exactly similar, the only difference
being that the biases would be higher in this case. For example, in the first round,
the probability Pr(X15[0] = X ′15[0]) would become 1, instead of 0.75 (Lemma 2). In
Table 1, we provide the experimental probabilities based on 10,000 random key-IV
pairs for chosen IV in the last column, which gives a clear idea about how the difference
propagates.

5 Conclusion

Our work finds out the exact reason for an observed result, which has been exploited
for one decade in the key recovery attacks against Salsa. This work provides a deep
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Table 1. Comparison between theoretical and experimental results

Output bits Theoretical result Experimental result Chosen IV Experimental result [7]

X1
15[0] 0.75 0.75 1.0

X3
4 [8] 0.998 0.996 0.997

X3
12[21] 0.025 0.022 0.021

X3
0 [7] 0.94 0.95 0.95

X3
1 [14] 0.96 0.98 0.98

X3
3 [7] 0.75 0.74 0.93

X4
1 [14] 0.56 0.56 0.62

insight of the distinguisher observed for Salsa. In the differential attack idea against
Salsa, it has always been an aim for the researchers to increase the observed bias and if
possible, extend it to next rounds. This theoretical explanation will help to get a clear
picture of the propagation of the bias from the beginning, which may help to find some
better distingisher by some suitable method.
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