En 1637, Descartes appelle courbes géométriques celles que l’on peut décrire par des mouvements bien réglés...
En 1878, Pafnouti Tchebychev présentait à l'Exposition Universelle de Paris une "machine plantigrade".
Comment, par des expériences locales, deviner la forme d'un espace ? On se laissera guider par Henri Poincaré.
Le triangle de Penrose est un objet imaginaire qu'on peut dessiner mais pas construire en 3D.
Nous expliquerons comment un résultat de topologie peut être utilisé à des fins criminelles.
Platon attribue à Théodore de Cyrène la preuve de l’irrationalité des racines de 3, 5, 6, 7, 8, 10, 11, 12, 13, 14 15 et 17.
Une énigme mathématique basée sur de la combinatoire des permutations.
Dans les années 80, une notation numérique est inventée pour décrire des figures de jonglerie : le Siteswap
Comment dater des événements archéologiques grâce à un modèle statistique ?
Comment se comporte un « grand » objet combinatoire ? Comment paver un grand diamant aztèque par des dominos ?
Les nombres p-adiques sont des nombres qui, contrairement aux nombres usuels, possèdent une infinité de chiffres avant la virgule...