Les constructions à la règle et au compas sont fondamentales à la géométrie euclidienne du plan telle que nous la connaissons.
Qu'est-ce qu'une Équation Différentielle Stochastique ?
Qui a eu l'idée de rajouter un mouvement brownien ...
Le théorème d'incomplétude énonce [...] que toute théorie mathématique, assez puissante pour formuler l'arithmétique en son sein, n'est pas complète.
Un joueur est placé devant trois portes fermées. Derrière l'une d'elles se trouve une voiture...
Le champ de Higgs serait apparu juste après le Big Bang, par transition de phase. Avant, toutes les particules étaient sans masse, comme des anges. ...
Poursuivons la discussion sur les solitons initiée il y a 4 ans à l'aide d'un système dynamique discret dénommé box-ball...
Nous évoquerons en trois dates (1921, 1953, 1965) et trois noms...
Les méthodes de discrétisation des EDP ont été développées au siècle dernier...
Nous parlerons de certains risques qui peuvent survenir lorsqu’on joue au casino.
les suites de Goodstein forment un exemple 'simple' d'algorithme récursif arithmétique...
En 1637, Descartes appelle courbes géométriques celles que l’on peut décrire par des mouvements bien réglés...
Grâce à leurs propriétés mécaniques particulières, [...] les élastomères sont de plus en plus employés dans de nombreux domaines industriels, notamment l’étanchéité.
En 1878, Pafnouti Tchebychev présentait à l'Exposition Universelle de Paris une "machine plantigrade".
Grothendieck a introduit ses fameuses topologies car sur les variétés algébriques les ouverts de Zariski sont trop peu
Nous décrivons les opérateurs différentiels tordus sur la droite projective complexe associés à un caractère entier.
Quand on dessine le théorème d’Ostrowski, on obtient un espace de Berkovich : cela permet de considérer un entier relatif comme une fonction continue sur un arbre.
Faites rager vos amis en achetant les rues sur lesquelles ils tomberont le plus souvent.
« Il suffit de faire deux fois le tour du trou pour qu'il disparaisse ! ». Nous donnerons un sens à ce phénomène et en ferons une illustration concrète.
Comment reconnaître les situations de proportionnalité à l'aide de parallélogrammes
Attention à l'addition des pourcentages
Que dire de l'équation de Fermat lorsqu'on cherche ses solutions modulo un nombre premier ?
La longue histoire de la naissance du logarithme résumée en cinq minutes...
Comment utiliser la théorie de tresses pour mélanger au mieux de fluides.
Ou comment dupliquer des lingots d'or.
Nous expliquons ce qu'est le problème du logarithme discret sur lequel repose la sécurité de la plupart des crypto-systèmes à clef publique.
Un peu de combinatoire autour d'un problème qui nous touche lors d'un grand voyage en train.
Le triangle de Penrose est un objet imaginaire qu'on peut dessiner mais pas construire en 3D.
Jouer avec les nombres ou avec les figures géométriques.
On illustre géométriquement des formules bien connues de sommes d'entiers.
Le théorème de Lagrange énonce que l’ordre d’un sous-groupe d’un groupe fini divise l’ordre de ce groupe...