Les constructions à la règle et au compas sont fondamentales à la géométrie euclidienne du plan telle que nous la connaissons.
On s’intéresse à la définition de modèles stochastiques pour décrire les mouvements à grande échelle d’écoulements fluides géophysique.
Le théorème d'incomplétude énonce [...] que toute théorie mathématique, assez puissante pour formuler l'arithmétique en son sein, n'est pas complète.
Le champ de Higgs serait apparu juste après le Big Bang, par transition de phase. Avant, toutes les particules étaient sans masse, comme des anges. ...
Il n'existe pas d'algorithme qui, sur présentation d'une équation polynomiale à coefficients entiers...
Poursuivons la discussion sur les solitons initiée il y a 4 ans à l'aide d'un système dynamique discret dénommé box-ball...
Nous évoquerons en trois dates (1921, 1953, 1965) et trois noms...
Les méthodes de discrétisation des EDP ont été développées au siècle dernier...
La physique quantique est une théorie intrinsèquement et irréductiblement aléatoire ...
Si on s’amuse à lancer une bille vers une autre bille immobile...
les suites de Goodstein forment un exemple 'simple' d'algorithme récursif arithmétique...
Dans la tradition musicale occidentale, nous nous sommes habitués à écouter des instruments qui sont accordés de manière fausse...
En 1637, Descartes appelle courbes géométriques celles que l’on peut décrire par des mouvements bien réglés...
Grâce à leurs propriétés mécaniques particulières, [...] les élastomères sont de plus en plus employés dans de nombreux domaines industriels, notamment l’étanchéité.
En 1878, Pafnouti Tchebychev présentait à l'Exposition Universelle de Paris une "machine plantigrade".
Grothendieck a introduit ses fameuses topologies car sur les variétés algébriques les ouverts de Zariski sont trop peu
Nous décrivons les opérateurs différentiels tordus sur la droite projective complexe associés à un caractère entier.
Quand on dessine le théorème d’Ostrowski, on obtient un espace de Berkovich : cela permet de considérer un entier relatif comme une fonction continue sur un arbre.
« Il suffit de faire deux fois le tour du trou pour qu'il disparaisse ! ». Nous donnerons un sens à ce phénomène et en ferons une illustration concrète.
Que disent exactement la construction des entiers de Von Neumann et les résultats sur l'hypothèse du continu ?
Un petit aperçu des ensembles infinis et de leurs propriétés surprenantes
Que dire de l'équation de Fermat lorsqu'on cherche ses solutions modulo un nombre premier ?
La longue histoire de la naissance du logarithme résumée en cinq minutes...
Comment utiliser la théorie de tresses pour mélanger au mieux de fluides.
Ou comment dupliquer des lingots d'or.
Nous expliquons ce qu'est le problème du logarithme discret sur lequel repose la sécurité de la plupart des crypto-systèmes à clef publique.
Le triangle de Penrose est un objet imaginaire qu'on peut dessiner mais pas construire en 3D.
Jouer avec les nombres ou avec les figures géométriques.
On illustre géométriquement des formules bien connues de sommes d'entiers.