Les constructions à la règle et au compas sont fondamentales à la géométrie euclidienne du plan telle que nous la connaissons.
Les constructions à la règle et au compas sont fondamentales à la géométrie euclidienne du plan telle que nous la connaissons.
Le théorème d'incomplétude énonce [...] que toute théorie mathématique, assez puissante pour formuler l'arithmétique en son sein, n'est pas complète.
Nous évoquerons en trois dates (1921, 1953, 1965) et trois noms...
Les méthodes de discrétisation des EDP ont été développées au siècle dernier...
les suites de Goodstein forment un exemple 'simple' d'algorithme récursif arithmétique...
En 1637, Descartes appelle courbes géométriques celles que l’on peut décrire par des mouvements bien réglés...
En 1878, Pafnouti Tchebychev présentait à l'Exposition Universelle de Paris une "machine plantigrade".
Grothendieck a introduit ses fameuses topologies car sur les variétés algébriques les ouverts de Zariski sont trop peu
Nous décrivons les opérateurs différentiels tordus sur la droite projective complexe associés à un caractère entier.
Quand on dessine le théorème d’Ostrowski, on obtient un espace de Berkovich : cela permet de considérer un entier relatif comme une fonction continue sur un arbre.